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6 Open Publication License

Open Publication License

0.1 License Terms for “Engineering a Beowulf-

style Compute Cluster”

0.1.1 General Terms

License is granted to copy or use this document according to the Open Public
License (OPL, detailed below), which is a Public License, developed by the GNU
Foundation, which applies to “open source” generic documents.

In addition there are three modifications to the OPL:

1. Distribution of substantively modified versions of this document is pro-
hibited without the explicit permission of the copyright holder. (This is
to prevent errors from being introduced which would reflect badly on the
author’s professional abilities.)

2. Distribution of the work or derivative of the work in any form whatsoever
that is sold for a profit is prohibited unless prior permission is obtained
from the copyright holder. This is so that the copyright holder (a.k.a. the
author) can make at least some money if this work is republished as a
textbook or set of notes and sold commercially for – somebody’s – profit.
The author doesn’t care about copies photocopied or locally printed and
distributed free or at cost to students to support a course, except as far
as the next clause is concerned.

3. The ”Beverage” modification listed below applies to all non-Duke usage
of this work in any form (online or in a paper publication). Note that this
modification is probably not legally defensible and can be followed really
pretty much according to the honor rule.

As to my personal preferences in beverages, red wine is great, beer is de-
lightful, and Coca Cola or coffee or tea or even milk acceptable to those who
for religious or personal reasons wish to avoid stressing my liver. Students and
Faculty at Duke, whether in my class or not, of course, are automatically ex-
empt from the beverage modification. It can be presumed that the fraction of
their tuition that goes to pay my salary counts for any number of beverages.

0.1.2 The “Beverage” Modification to the OPL

Any user of this OPL-copyrighted material shall, upon meeting the primary au-
thor(s) of this OPL-copyrighted material for the first time under the appropriate
circumstances, offer to buy him or her or them a beverage. This beverage may
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or may not be alcoholic, depending on the personal ethical and moral views of
the offerer(s) and receiver(s). The beverage cost need not exceed one U.S. dollar
(although it certainly may at the whim of the offerer:-) and may be accepted or
declined with no further obligation on the part of the offerer. It is not necessary
to repeat the offer after the first meeting, but it can’t hurt...

0.1.3 OPEN PUBLICATION LICENSE Draft v0.4, 8 June
1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED
VERSIONS

The Open Publication works may be reproduced and distributed in whole
or in part, in any medium physical or electronic, provided that the terms of this
license are adhered to, and that this license or an incorporation of it by reference
(with any options elected by the author(s) and/or publisher) is displayed in the
reproduction.

Proper form for an incorporation by reference is as follows:
Copyright (c) <year> by <author’s name or designee>. This material may

be distributed only subject to the terms and conditions set forth in the Open
Publication License, vX.Y or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the
author(s) and/or publisher of the document (see section VI).

Commercial redistribution of Open Publication-licensed material is permit-
ted.

Any publication in standard (paper) book form shall require the citation
of the original publisher and author. The publisher and author’s names shall
appear on all outer surfaces of the book. On all outer surfaces of the book the
original publisher’s name shall be as large as the title of the work and cited as
possessive with respect to the title.

II. COPYRIGHT
The copyright to each Open Publication is owned by its author(s) or de-

signee.
III. SCOPE OF LICENSE
The following license terms apply to all Open Publication works, unless

otherwise explicitly stated in the document.
Mere aggregation of Open Publication works or a portion of an Open Pub-

lication work with other works or programs on the same media shall not cause
this license to apply to those other works. The aggregate work shall contain a
notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in
any jurisdiction, the remaining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided ”as
is” without warranty of any kind, express or implied, including, but not limited
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to, the implied warranties of merchantability and fitness for a particular purpose
or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS
All modified versions of documents covered by this license, including transla-

tions, anthologies, compilations and partial documents, must meet the following
requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifi-
cations dated.

3. Acknowledgement of the original author and publisher if applicable must
be retained according to normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or
imply endorsement of the resulting document without the original author’s
(or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS
In addition to the requirements of this license, it is requested from and

strongly recommended of redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM,
you provide email notification to the authors of your intent to redistribute
at least thirty days before your manuscript or media freeze, to give the
authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked
up in the document or else described in an attachment to the document.

Finally, while it is not mandatory under this license, it is considered good
form to offer a free copy of any hardcopy and CD-ROM expression of an Open
Publication-licensed work to its author(s).

VI. LICENSE OPTIONS
The author(s) and/or publisher of an Open Publication-licensed document

may elect certain options by appending language to the reference to or copy of
the license. These options are considered part of the license instance and must
be included with the license (or its incorporation by reference) in derived works.

A. To prohibit distribution of substantively modified versions without the
explicit permission of the author(s). ”Substantive modification” is defined as a
change to the semantic content of the document, and excludes mere changes in
format or typographical corrections.

To accomplish this, add the phrase ‘Distribution of substantively modified
versions of this document is prohibited without the explicit permission of the
copyright holder.’ to the license reference or copy.



9

B. To prohibit any publication of this work or derivative works in whole or
in part in standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase ’Distribution of the work or derivative of
the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder.’ to the license reference or copy.

OPEN PUBLICATION POLICY APPENDIX:
(This is not considered part of the license.)
Open Publication works are available in source format via the Open Publi-

cation home page at http://works.opencontent.org/.
Open Publication authors who want to include their own license on Open

Publication works may do so, as long as their terms are not more restrictive
than the Open Publication license.

If you have questions about the Open Publication License, please contact
TBD, and/or the Open Publication Authors’ List at opal@opencontent.org, via
email.
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Preface

0.2 Preface

To put my professional and topical acknowledgements first, where they belong:
This book is dedicated to my many virtual friends on the beowulf list and
elsewhere in the Linux world. I literally could not have written it without their
help as there are a number of things that I write about below that I’ve never
really done myself. I’m relying on the many reports of their experiences, good
and bad, that have been added to the archives of the beowulf list over the years.
I’m also (in the best “open source” tradition) relying on their feedback to correct
any errors I may have made in writing this book.

Any errors that may have occurred are not their fault, of course; they are
entirely mine.

I have tried in this book to create the basis for a reasonable understanding of
the beowulf-class linux-based parallel (super)compute cluster. This book makes
no pretence of being a text on computer science – it is intended for readers
ranging from clever high school students with a few old x86 boxes and an eth-
ernet hub to play with to senior systems programmers interested in engineering
a world-class beowulf (with plenty of room in between for pointy-haired bosses,
linux neophytes, hobbyists, and serious entrepreneurs). It is also deliberately
light-hearted. I intend the text to be readable and fun as opposed to heavy and
detailed.

This shouldn’t seriously detract from its utility. Half of the fun (or profit) of
beowulfery comes from the process of discovery where one takes the relatively
simple idea of a beowulf and a few tools and crafts the best possible solution to
your problem(s) for far less than one could purchase the solution commercially
on “big iron” supercomputers. I have a small beowulf at home, and so can
you (for as little as a two or three thousand dollars). I also have a larger

beowulf at work (the Duke University Physics Department), and so can you
(for a current cost that ranges between perhaps $500 and $8500 per brand new
node, depending on just what and how much of it you get).

There is good reason to get involved in the beowulf game. One day beowulfs
will play the best virtual reality games, allow you or your kids to make movies
like “Toy Story” in the privacy of your own home (with a toolbox of predefined
objects and characters so all you have to do is provide an upper-level script),
solve some of the most puzzling problems of the universe, model chemicals in
rational drug design packages, simulate nuclear explosions to allow advanced
weapons to be designed without testing, permit fabulous optimizations to be
performed with advanced genetic algorithms, and...

Well, actually beowulfs or beowulf-like architectures are already doing most
of these things one place or another, and far more besides. The beowulf design
is one of the best designs for doing parallel work because of three things: It
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is an extensible, scalable design built out of cheap commodity parts (where the
word “cheap” has to be understood as “compared to the alternatives”). For
that reason beowulf-style cluster computing (as a phenomenon) has grown from
a handful of places and people five to ten years ago to literally cover the earth
today. Its growth continues unabated today, driven by one of the strongest of
human urges1.

At this point, there are beowulfs or beowulf-like clusters in place in univer-
sities and government research centers on all the continents of the world. In
many cases, the beowulf route is the only way these universities or research
centers can acquire the computational power they need at an affordable cost.
If I can build a beowulf at home, so can the physics students and faculty in
a physics department in Venezuela, or Thailand, and for about the same cost.
It is one way, as my friends overseas have pointed out in off-list conversations,
that entrepreneurs and businesses in small countries can compete with even
the biggest companies with the biggest computational facilities in the United
States, in spite of ruinous and misguided export restrictions that prevent the
international sale of most high powered computer systems except to carefully
selected (in all the senses of the word) countries and facilities. Yes, beowulfs
are also about freedom and opportunity.

Up to now, beowulfs have been relatively rare in the corporate environment,
at least in the United States. It is not that corporations are unaware of the
power of linux-based cluster computer environments – a lot of the web-farms
in use today harness this power with equal benefits in terms of low cost and
scalability. It’s just that (as the book should make clear) parallelizing a big
program is a complex task, which inhibits the development of commercial par-
allel applications.

However, in my ever-so-humble opinion, this period is about to come to an
end. This is for several reasons. First of all, the beowulf design has shaken down
into a “recipe” that will work for a wide range of applications. This recipe is
extremely cheap and simple to implement, which allows software developers to
actually design software for a “known” target architecture. In the past this has
been impossible with many beowulfish clusters being “one of a kind” designs.

Second, advances on the hardware front, especially in the related realms
of modular computers and high speed networks, promise a new generation of
mass-market-commodity off-the-shelf components that can be assembled into
“parallel supercomputers” with just the right software glue. It should come as
no surprise that linux is a prime choice for the operating system to run on a lot
of those small systems, since it has the right kind of modular architecture to
run well with limited resources and “grow” as resources are added or connected.
Is it any surprise that Linus Torvalds (the central and original inventor/creator
of linux, which by now is being written and advanced by a small army of the
world’s best systems programmers) is working for Transmeta, a company that
makes processors for ultralight mobile network-ready computers? I think not.

1I’m speaking, of course, of the urge to shop (and get the best bargain for your money).
You probably thought I was talking about sex or survival or something like that, didn’t you.
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Transmeta is also not the only company working on small, fast, modular com-
puter units.

Similarly, considerable energy is being expended working on advanced net-
works that may eventually form the communications channels for such a modular
approach to computing. Really significant advances are a bit slower here (as the
problems to overcome are not easy to solve) but networking has already reached
the critical cost/benefit point to enable “recipe” beowulfs to be built for very
little money. The eight port 100BT switch I use in my beowulf at home cost
me a bit over $200 six months ago. Now it can be purchased for less than $150
– networking nodes together can be accomplished for as little as $40-50/node.

It is strictly downhill (in price/performance) from here. The next few years
will see ever cheaper, ever faster network devices accompanied by new kinds

of system interconnection devices that in a few years will permit nodes to be
added at speeds ten or more times that of today for that same $40-50/node.
On the other hand, the higher speed processors cost a lot more to build as their
speed is cranked up, and the effect of the higher speed is less and less visible to
ordinary computer users.

Beowulfery represents a different (and less expensive) way to achieve and
surpass the same speed. I believe that this will lead to a fundamental redesign
of the personal computer. Just as computers now have an expansion bus that
allows various peripheral devices to be attached, future “computers” may well
have an expansion bus that allows additional “compute nodes” to be attached –
computers themselves may be mini-beowulfs that run software developed using
the principles discussed in this book. This sort of thing has actually been tried
a number of times in the past, but the systems in question have lacked proper
software support (especially at the operating system level) and the appropriate
hardware support as well. The next time the idea resurfaces, though, this will
likely not be the case. Watch for it on your IPO screens.

Even if this particular vision fails to come to pass, though, the future of the
beowulf-style (super)compute cluster is assured. As the book should make clear,
there is simply no way to do any better than a beowulf design for many, many
kinds of tasks (where better means better in price/peformance, not raw perfor-
mance at any price). If you have a problem that involves a lot of computation
and don’t have a lot of money, it’s the only game in town.

To conclude with my more mundane acknowledgements, I’d also like to thank
my lovely wife, Susan Isbey and my three boys Patrick, William and Sam for
their patience with my supercomputing “hobby”. It isn’t every home where the
boys are forbidden to reboot a system for three days because it is running a
calculation. Also, I can sometimes be a bit cranky after staying up all night
writing or working (something I do quite a lot), and they’ve had to live with
this. Thanks, guys.
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Chapter 1

Introduction

The Tao of Cluster Computing

In a little known book of ancient wisdom appears the following Koan:

The Devil finds work

For idle systems

Nature abhors a NoOp

The sages have argued about the meaning of this for centicycles, some contending

that idle systems are easily turned to evil tasks, others arguing that whoever uses

an idle system must be possessed of the Devil and should be smote with a sucker

rod until purified.

I myself interpret ”Devil” to be an obvious mistranslation of the word ”Dae-

mon”. It is for this reason, my son, that I wish to place a simple daemon on

your system so that Nature is satisfied, for it is clear that a NoOp is merely a

Void waiting to be filled...

This is the true Tao.

–rgb

The following might be considered a “recipe” for a beowulf-class cluster
supercomputer:

1. Buy a pile of M2COTS (Mass Market Commodity-Off-The-Shelf) PC’s
for “nodes”. Details (graphics adapter or no, processor speed and family,
amount of memory, UP or SMP, presence and size of disk) unimportant,
as long as they “work” in the configuration purchased.

2. Add a nice, cheap 100BT Network Interface Card (NIC) to each. Connect
each NIC to nice, cheap 100BT switch to interconnect all nodes1.

1Hmmm. If you are reading this footnote, it’s possible that you didn’t understand that I

15
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3. Add Linux and various “ExtremeLinux/Beowulf” packages to support dis-
tributed parallel computing; PVM, MPI, MOSIX, maybe more2.

4. Blow your code away by running it in parallel. . .

Before I discuss the “recipe” further, there are some technical things that
differentiate various sorts of cluster computing setups3. Many arrangements
that more or less conform to the recipe above are not really beowulfs but are
rather NOWs (network of workstations) or COWs (cluster of workstations) or
POPs (Pile of PC’s). Furthermore, some perfectly legitimate beowulfishly4

architected clusters are used to provide failover protection or high availability
(e.g. webserver farms, transaction processing clusters) are not really beowulfs.

Clearly, we need to specify in some detail the answer to two questions, the
first a FAQ on the beowulf list (sometimes answered when it isn’t even asked).
The first is “What’s a Beowulf”. The second is “What is this book going to
discuss”. So let’s get to it.

meant “100 BaseT Fast Ethernet Switch” or what that is. And I don’t have the time or space
to tell you right here. Check out the Beowulf Hardware appendix.

2Which are similarly described in the “Beowulf Software” appendix.
3I’m trying to write an entertaining book as much as a useful one (if I can’t please you

one way, maybe I can please you the other, eh). I’m therefore going to write in a “folksy”
first person instead of an “academic” (and dry) third person. I’m also going to insert all sorts
of parenthetical comments (like this one) as parenthetical comments or footnotes. I can only
hope that this doesn’t make you run screaming from the room after reading for five minutes.

4You have to love English. Take a noun (beowulf). Adjectivize it (beowulfish). Then
adverbize the resulting adjective (beowulfishly). Nuttin’ to it. Not to mention the fact that
any noun can be verbed.
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Figure 1.1: Beowulf (left) vs Mixed Cluster – NOW,COW (right)

1.1 What’s a Beowulf?

Examine the schema in figure 1.1. On the left, we have the “true beowulf”. The
accepted definition of a true beowulf is that it is a cluster of computers (“com-
pute nodes”) interconnected with a network with the following characteristics:

• The nodes are dedicated to the beowulf and serve no other purpose.

• The network(s) on which the nodes reside is(are) dedicated to the beowulf
and serve(s) no other purpose.

• The nodes are M2COTS computers. An essential part of the beowulf def-
inition (that distinguishes it from, for example a vendor-produced mas-
sively parallel processor – MPP – system) is that its compute nodes are
mass produced commodities, readily available “off the shelf”, and hence
relatively inexpensive.

• The network is also a COTS entity (if not actually “mass market” – some
beowulf networks are sold pretty much only to beowulf builders), at least
to the extent that it must integrate with M2COTS computers and hence
must interconnect through a standard (e.g. PCI) bus. Again, this is
primarily to differentiate it from vendor-produced MPP systems where
the network and CPUs are custom-integrated at very high cost.

• The nodes all run open source software.

• The resulting cluster is used for High Performance Computing (HPC, also
called “parallel supercomputing” and other names).
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These are the necessary requirements. Note well that they both specify cer-
tain key features of the layout and architecture and contain an application speci-
fication. A cluster “like” a beowulf cluster that fails in any of these requirements
may be many things, but a beowulf is not one of them. In addition there are a
few other things that characterize most beowulfs and that at least some would
argue belong in the “necessary” list above.

• The nodes all run a variant of Linux as their base operating system.
Linux/Gnu and the Beowulf project and the associated Extreme Linux
project have a long and entangled history. The original beowulf was built
upon Linux and Gnu – indeed most of the ethernet device drivers origi-
nally provided with Linux were developed by Don Becker for the Beowulf
project.

• There is one “special” node generally called the “head” or “master” node.
This node often has a monitor and keyboard and has network connections
both on the “inside” network (connecting it to the rest of the “slave” nodes)
and on the “outside” to a general purpose organizational internetwork.
This node often act as a server for e.g. shared disk space.

• Generally the nodes are all identical – configured with the same CPU,
motherboard, network, memory, disk(s) and so forth and are neatly racked
up or stacked up in shelves in a single room in a spatially contiguous way.

• Generally the nodes are all running just one calculation at a time (or
none).

These requirements are a bit “softer” – a purist (and the list does have

its purists) might insist on one or more of them but at some point a list of
criteria like this obstructs creativity and development as much as it provides
a “proven” structure. As you can probably tell, I’m not a purist, although I
appreciate the virtues of the primary definition and hope to communicate a full
understanding of those virtues in the following chapters. Let’s examine these
secondary requirements and make editorial comments.

Many folks on the beowulf list (including myself) are perfectly happy to rec-
ognize a cluster with all the architectural characteristics but running FreeBSD
(an open source, unix-like operating system) as a “beowulf”, while they would
(and periodically do, rather “enthusiastically”) reject the same cluster running
closed-source Windows NT.

The point of beowulfery has never been to glorify Linux per se (however much
or little it might deserve glorification) but rather to explore the possibilities of
building supercomputers out of the mass-market electronic equivalent of coat
hangers and chewing gum. An essential part of this is an open source operating
system and development environment, as one’s problems and optimizations will
often require modification of e.g. the kernel, the network device drivers, or other
task-specific optimizations that require the sources. Let’s understand this.

Debugging certain problems has historically required access to the kernel
sources and has been none too easy even with them in hand. If a network parallel
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computation fails, is it because of your parallel code or because the network
driver or TCP stack is broken? If you use a closed-source, proprietary operating
system and try to seek vendor support for a problem like this, the uniform
answer they’ll give you will be ”your parallel program” even though your code
works fine on somebody else’s operating system and many problems encountered
in beowulfery have indeed turned out to be in the kernel. Sometimes those
problems are features of the kernel or its components.

Deliberate features of the TCP stack, for example, are intended to produce
robustness across a wide area network but can cause nasty failures of your TCP-
based parallel codes5. If you encounter one of these problems, you personally
may not be able to fix it, but because Linux is open source, it is fairly likely that
one of the real kernel-hacking deities of the beowulf or kernel list will be able
to help you. Sometimes “hacks” of the kernel that “break” it (or mistune it)
for general purpose usage can be just the ticket to improve efficiency or resolve
some beowulf-specific bottleneck.

Indeed, several important beowulf tools have required a custom kernel to
operate, and the only reason that these tools exist at all is because a group of
“visionaries” who also happened to be damn good programmers had access to
the kernel sources and could graft in the modifications essential to their tool
or service. MOSIX is one example. bproc and the Scyld beowulf package are
another6.

Access to the (open, non-proprietary kernel and other) source is thus essen-

tial to beowulfery, but it doesn’t (in my opinion) have to be Linux/GNU source.
A warning for newbies, though – if you want to be able to get “maximum help”
from the list, it’s a good idea to stick with Linux because it is what most of the
list members use and you’ll get the most and best help that way. For example,
Don Becker, one of the primary inventors of the beowulf, goes to Linux meet-
ings and conferences and Expos, not (as far as I know) FreeBSD conferences
and Expos. So do most of the other “experts” on the beowulf list. There are
persons on the list running FreeBSD-based beowulfs (as well as a number of
general Unix gurus who don’t much care what flavor of *nix you run – they can
manage it), but not too many.

The second requirement originates from the notion that a beowulf is archi-
tecturally a “single parallel supercomputer” dedicated only to supercomputing
and hence has a single point of presence on an outside network, generally named
something interesting and evocative7. However, there are sometimes virtues in
having more than one head node and are often virtues in having a separate disk
server node or even a whole farm of “disk nodes”8. Beowulf design is best driven

5This has actually happened. See e.g. http://www.icase.edu/coral/LinuxTCP2.html for
details.

6All of these are discussed later. Be patient.
7The list of names of “registered” beowulfs on the beowulf website contains entries like

“Grendel” (Clemson), “Loki” (Los Alamos), “Brahma” (Duke), “Medusa” (New Mexico
State), and “Valhalla” (University of Missouri) as well as more whimsical names such as
“Wonderland” (University of Texas at Austin).

8See for example the Parallel Virtual File System (PVFS) being developed at Clemson.
This effort promises to parallelize disk access in a beowulf as an integrated part of the beowulf’s
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(and extended) by one’s needs of the moment and vision of the future and not by
a mindless attempt to slavishly follow the original technical definition anyway.

The third requirement is also associated with the idea that the supercom-
puter is a single entity and hence ought to live in just one place, but has a
more practical basis. One reason for the isolation and dedication is to enable
“fine grained synchronous” parallel calculations (code with “barriers” – which
will be defined and discussed later) where one needs to be able to predict fairly
accurately how long a node will take to complete a given parallel step of the
calculation. This is much easier if all the nodes are identical. Otherwise one
has to construct some sort of table of their differential speeds (in memory-size
dependent context, which can vary considerably, see the chapter on hardware
profiling and microbenchmarking) and write your program to distribute itself
in such a way that all nodes still complete steps approximately synchronously.

However, it is easy to start with all nodes identical if one is “rich” and/or
buys them all at once, but difficult to keep them that way as nodes (or parts of
nodes) break and are replaced, or as Moore’s Law inexorably advances system
performance and you want or need to buy new nodes to upgrade your beowulf9.
Again, it isn’t worth quibbling about whether mixing 800 MHz nodes with 400
MHz nodes (while otherwise preserving the beowulf architecture) makes the
resulting system “not a beowulf”. This is especially true if one’s task partitions
in some way that permits both newer and older nodes to be efficiently used.
The PVFS project10 is just one kind of task partitioning that would do so – run
the PVFS on the older nodes (where speed and balance are likely determined by
the disk and network and not memory or CPU anyway) and run the calculation
on the newer nodes.

One of the major philosophical motivations for beowulfery has always been to
save money – to get more computing (and get more of Your Favorite Work done)
for less money. That’s why you bought this book11, remember? If you didn’t
care about money you would have called up one of the many Big Iron companies
who would have been more than happy to relieve you of a million or four dollars
for what a few hundred thousand might buy you in a beowulfish architecture
and never had to learn or do a damn thing12. Mixed node architectures extends

parallel operations. Would I call a beowulf-like collection of compute nodes mixed with disk
nodes (and possibly other kinds of specialized nodes) a beowulf? I would.

9Moore’s Law will be discussed later. It is an empirical observation that at any given price
point computer performance has doubled approximately every 9-12 months for the last forty
or more years. No kidding. This means that a 16 node beowulf that you’re very proud of
initially can be replaced by a single node within three or so years. Moore’s Law makes any

node or beowulf or computer design a thing of purely transient beauty.
10You are reading all the footnotes, aren’t you? No? Sigh. Why did I bother to write them,

then? Go back and read the last few...
11If, in fact, you bought this book at all. The truly cheap will be reading it a painful page at

a time off the website instead of investing the truly trivial amount of money at their favorite
computer bookstore necessary to ensure that I actually make a royalty and that they can read
in bed. Once I actually get it published so you CAN buy it, of course.

12Except to pay, of course. Over and over again. Repeatedly. Big Iron supercomputing is
expensive. Best of all, after you’ve owned your million-plus dollar supercomputer for as few
as four or five years, you can typically sell it for as much as $3500 on the open market – they
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the useful lifetime of the nodes you buy and can ultimately save you money.

Similar considerations attend the use of a single beowulf to run more than
one different computation at a time, which is an obvious win in the event that
calculation A saturates its parallel speedup when it is using only half the nodes.
If one can (and it would seem silly not to) then one could always run calculation
A on some of the 800 MHz nodes and calculation B (which might be less fine
grained or could even be embarrassingly parallel) on the rest and all the older
400 MHz nodes without the cluster suddenly hopping out of the “true beowulf”
category.

So now you know what a beowulf is. What about something that looks a
lot like a beowulf (matches on “most” of the necessary criteria, but misses on
just one or two counts)? It’s not a beowulf, but it might still behave like one
and be similarly useful and cost effective. Sometimes so cost effective that it is
literally free – a secondary use of hardware you already have lying around or in
use for other purposes.

This brings us to the second question (and second figure). The “cluster su-
percomputer” schematized there looks a lot like a beowulf. There are a bunch of
commodity workstations that can function as “nodes” in a parallel calculation.
There is a commodity network whereby they can be controlled and communi-
cate with one another as the calculation proceeds. There are server(s). There
are “head nodes” (which are themselves just workstations). We can certainly
imagine that this cluster is running Linux and is being used to perform HPC
calculations among other things.

Such a “cluster” is called variously a “Network of Workstations” (NOW),
a “Cluster of Workstations” (COW), a “Pile of PC’s” (POP) or an “Ordinary
Linked Departmental” (OLD) network13.

A cluster like this isn’t, technically a beowulf. It isn’t isolated. The “nodes”
are often doing several things at once, like letting Joe down the hall read his mail
on one node while Jan upstairs is browsing the web on hers. So is the network;
it is delivering Joe’s mail and carrying HTML traffic to and from Jan’s system.
These tiny, unpredictable loads make such an architecture less than ideal for fine
grained, synchronous calculations where things have to all finish computational
steps at the same time or some nodes will have to wait on others.

However, those little loads on average consume very little of the computa-
tional and networking capacity of the average modern network. There is plenty
left over for HPC calculations. Best of all, in many cases this computational
resource is free in that Joe and Jan have to have computers on their desk anyway

in order to do their work (however little of the total capacity of that computer
they on average consume). Most users hardly warm up their CPUs doing rou-
tine tasks like text processing and network browsing. They are more likely to
consume significant compute resources when they crank up graphical games or

get bought to recycle the gold from their contacts, for example. I almost bought Duke’s five
year old CM5 some years ago for just about this much money but I couldn’t figure out how I
was going to plug it in in my garage. True story, no kidding, by the way.

13Now I’m kidding. I just made that up. Cute, huh? Computer folks just love jargon and
acronyms. Wait for it now...
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encode MP3s!
For obvious reasons many of the things one needs to know to effectively per-

form parallel HPC calculations on a true beowulf apply equally well to any OLD
network14. For that reason, this book is also likely to be of use to and provide
specific chapters supporting distributed parallel computing in a heterogeneous
environment like an OLD network – including those made out of old systems.
Even though they don’t technically make up a beowulf.

For the rest of the book, I’m going to use the term “beowulf” and “cluster”
interchangeably – except when I don’t. I’ll try to let you know when it matters.
If I want to emphasize something that really only applies to a beowulf I’ll likely
use a phrase like “true beowulf” and support this in context. Similarly, it should
be very clear that when I talk about a compute cluster made up of workstations
spread out over a building with half of them in use by other people at any given
time, I’m talking about a NOW or COW but not a “true beowulf”.

The beowulf list respects this association – a good fraction of the participants
are interested in HPC cluster computing in general and could care less if the
cluster in question is technically a beowulf. Others care a great deal but are kind
enough to tolerate an eclectic discussion as long as it doesn’t get too irrelevant
to true beowulfery. Many (perhaps most) of the issues to be confronted are the
same, after all, and overall the beowulf list has a remarkably high signal to noise
ratio.

Given that we’re going to talk about a fairly broad spectrum of arrangements
of hardware consonant with the beowulfish “recipe” above, it makes sense to
establish, early on, just what kinds of work (HPC or not) that can sensibly
be done, in parallel, on any kind of cluster. Suppose you have a bunch of old
systems in a closet, or a bunch of money you want to turn into new systems
to solve some particular problem, or want to recover cycles in a departmental
network: Will the beowulf “recipe” meet your needs? Will any kind of cluster?
In other words...

1.2 What’s a Beowulf Good For?

The good news is that the “standard” beowulf recipe, as simple as it is, is very
likely to result in a beowulf that can accomplish certain kinds of work much
faster than a single computer working alone. For that matter, so is any OLD
network – for some problems (examples will be given later) the entire Internet
can be put to work in parallel on parts of the problem with tremendous increases
in the amount of work accomplished per unit time.

The bad news is that the phrase “certain kinds of work” fails to encompass
all sorts of common tasks. I really mean it. Only certain kinds of work can be
run profitably (that is, faster) on a parallel processing supercomputer (of any
design).

Even worse, as a general rule a task that can be run profitably on a parallel
supercomputer will generally not run any faster on one unless it is specially

14...there!
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designed and written to take advantage of the parallel environment. Very little
commercial software has yet been written that is designed a priori to run in
a parallel environment and that which exists is intended for very narrow and
specialized applications.

Writing parallel software is not particularly difficult, but neither is it partic-
ularly easy. Of course, some people would say that writing serial software isn’t
particularly easy, and parallel is definitely harder. Well, OK, for many people
maybe writing parallel software is particularly difficult. For one thing, any kind
of parallel environment is a lot more complex than the already complex serial
environment (which these days has lots of parallel features) and this complexity
can interact with your software in odd and unexpected ways.

From this might guess that the design of the software to be run on your
beowulf-style cluster is likely to be at least as important to the success of your
beowulf effort as the design of the beowulf itself. Actually, it is probably more

important. As this work will explore in great detail, a cost-benefit optimal
design for a beowulf can only be determined after many of the characteristics
of the software to be run on it are known quantitatively and an effective par-
allel software design matched to the quantitatively known low-level hardware
capabilities.

Although this is a warning, it is not intended to be a discouraging warning.
On the contrary, the design above (augmented with a few more choices and
possibilities) is remarkably robust. That is, if one has a “big” computing job
(the sort that takes a long time to run and hence would benefit from a significant
speedup) it is quite likely15 that it can be rewritten to run (optimally) profitably
in parallel on a beowulf built according to the recipe or on a possibly even
cheaper and simpler NOW. The remainder of this book is intended to give
prospective beowulf builders and users a great deal of the knowledge and design
experience needed to permit them to realize this possibility.

With that said, there are most definitely some limitations on this work –
there are things it isn’t intended to do and won’t help you with. At least
not yet. Perhaps as the book evolves chapters will be added (by me or other
volunteers) to address these topics.

In the meantime, for example, it will say very little about the details of using
e.g. PVM16 or MPI17 (or any other parallel support library set or raw sockets

15The exact probability, of course, is subject to discussion, and therefore has been discussed
from time to time on the beowulf list (where we love to discuss things that are subject
to discussion). Donning my flameproof asbestos suit to repel the “flames” of those that
disrespectfully disagree I’d estimate that more than 70% of the computationally intensive
work that could be done with a parallel supercomputer of any kind can be done on a relatively
simple beowulf design. Actually, I’d say 90% but my suit wouldn’t withstand a nuclear blast
so I won’t.

16Parallel Virtual Machine. This is a set of library routines designed to facilitate the con-
struction of parallel software for a “virtual parallel supercomputer” made up of similar or
dissimilar machines on a network. It is open source software that significantly precedes the
beowulf effort and in some fundamental sense is its lineal ancestor. For more details see the
appendix on beowulf software.

17Message Passing Interface. Where PVM was from the beginning and open source effort,
MPI was originally developed by a consortium of parallel supercomputer vendors in response
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themselves) to write a network-parallel program. It presumes that if you are
going to write parallel software that you either know how to write it or are
prepared to learn how from other resources (some resources will be suggested).
Similarly, it isn’t intended to be a guide to MOSIX18 or Condor19 or any of a
number of other parallel computer or cluster management tools.

The one thing it is intended to do is to make the reader aware of some of the
fundamental issues and tradeoffs involved in beowulf design so that they can
do very practical things like write a sane grant proposal for a beowulf or build
a beowulf for their corporation (or convince their boss to LET them build a
beowulf for their corporation) or build a tiny (but useful) beowulf-style cluster
in their homes or offices or out of their existing OLD network.

This latter case is a very important, concrete example of how Linux-based
cluster computing can provide near-instant benefits in a corporate or educational
environment. Consider the following: One very powerful feature of the Linux
operating system is that it multitasks flawlessly as long as the system(s) in
question are not constrained by memory. Its scheduler has been deliberately
tuned to favor interactive usage20. As a consequence, certain beowulf-style
cluster designs will allow you to recover the benefit of all those cycles currently
being wasted on desktop systems (in between keystrokes while people read their
mail or edit some document, or worse, running silly screen savers when the users
of the systems aren’t even sitting at their desks) without impacting the user of
the console interface in any perceptible way.

This has to appeal to a small business owner with a big computing job to do
and a dozen desktop computers on a network currently twiddling their thumbs

to demands from their clients for a uniform API (Application Programming Interface). Before
MPI, all parallel supercomputers had to be programmed more or less by hand and the code
was totally non-portable. The life cycle of a parallel supercomputer was: a) Buy the beast.
Cost, several million dollars. b) Learn to program the beast. Convert all your code. Cost one
or two years of your life. c) Run your code in production for a year or so. d) Realize that
a desktop computer that now costs only a few thousand dollars can run your unparallelized
code just as fast. e) Sell your parallel supercomputer as junk metal for a few thousand dollars,
hoping to break even. I’m not kidding, by the way. Been there, done that.

18I have no idea what MOSIX stands for. Perhaps nothing. Perhaps it was developed by
a guy named Moe, the way Linux was developed by a guy named Linus. MOSIX software
makes your networked cluster transparently into a virtual multiprocessor machine for running
single threaded code. Very cool.

19Don’t think Condor means anything either, but the project has a cool logo. Where MOSIX
is transparent (attached to the kernel scheduler, if you like) Condor is a big-brother-like batch
job distribution engine with a scheduler and policy engine. By the way, anticipating that
you’re getting bored with pages that are half-footnote, in the future I’ll generally refer to
software packages without an explanation. As I said before, look in the Beowulf Software
Appendix for URL’s and more detailed explanatory text.

20Linus Torvalds has fairly religiously rejected any redesign of the core kernel scheduler
that doesn’t preserve “perfect” interactive response within the limitations imposed by the
hardware. Philosophically, the Linux kernel is willing to make long-running background tasks
wait a bit and perhaps lose 1% of the capacity of the CPU to ensure that it responds to
keyboard typing or mouse clicks now. As a consequence, a graphical user interface (GUI) user
is generally unable to tell whether one, two, or even three simultaneous background jobs are
“competing” with their GUI tasks for cycles. You can read the appendix on my own early
cluster experiences with a less friendly operating system to see why this is a Good Idea.
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(figuratively speaking). It can similarly benefit a university physics or chemistry
or math department, where there is a need to cover faculty, staff and graduate
student desks with SOME sort of desktop with a web interface and editing/mail
tools and there are also significant needs for real computation. If those desktops
are Windows-based systems or Macintoshes, their load average is likely to be
almost zero – nothing they do on a regular basis requires much CPU – but the
unused cycles are wasted as the systems are utterly inaccessible from the network
side. If they are running Linux, one can easily run background computations –
the whole department can become a readily accessible (transparent to the user)
multiprocessor compute cluster managed by e.g. MOSIX or can be running a
real parallel (PVM or MPI based) calculation – without the GUI performance
of the desktops being noticeably impacted21.

From this simple example it should be apparent that beowulf-style cluster
computing isn’t really just for computer scientists or physicists like myself. It
can provide real and immediate benefits to just about anyone with a need for
computation (in the sense of lots of compute cycles doing real calculations) as
opposed to an interface. Nearly everybody needs to do local computations on
local data at least some of the time22 – beowulfery simply provides an organi-
zation with the means to harvest the vast number of wasted cycles that accrue
when they aren’t doing computations locally.

1.3 Historical Perspective and Religious Homage

The concept underlying the beowulf-style compute cluster is not new, and was
not invented by any one group at any one time (including the NASA group
headed by Sterling and Becker that coined the name “beowulf”). Rather it was
an idea that was developed over a long period and that grew along with a set
of open source tools capable of supporting it (primarily PVM at first, and later
MPI). Note that this is not an attempt to devalue the contributions of Sterling
and Becker in any way, it is simply a fact.

However, Thomas Sterling and Don Becker at NASA-Goddard (CESDIS)
were, as far as I know, the first group to conceive of making a dedicated func-

tion supercomputer out of commodity components running entirely open source

software and Don Becker, especially, has devoted a huge fraction of his life to
the development of the open source software drivers required to make such a
vision reality. Don actually wrote most of the ethernet device drivers in use

21This is my own personal favorite approach to parallel supercomputing, and was a major
design factor in Brahma, Duke’s original beowulfish cluster effort which I called a “Distributed
Parallel Supercomputer” as it had both dedicated nodes and desktop nodes, mixing charac-
teristics of a beowulf and a NOW. In the physics department we kept Brahma running at
over 90% of its capacity for years and managed to cover a dozen or so desktops with very nice
systems indeed.

22Which is why they buy computers instead of “thin” client interfaces, which I personally
have repeatedly thought were a dumb idea, every time they’ve been reinvented over the years.
If people (other than corporate bean counters) wanted “thin” we’d still be timesharing with
evolved VT100 terminals, for God’s sake. It is especially stupid with the marginal cost of
“thick” at most a couple hundred dollars. IMHO, anyway.
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in Linux today, which are the sine qua non of any kind of networked parallel
computing23. The NASA group also made specific modifications to the Linux
kernel to support beowulf design (like channel bonding) that are worthy of men-
tion. Most recently Don Becker and Erik Hendricks and others from the original
NASA-Goddard beowulf team have formed Scyld.com24, which both maintains
the beowulf list and beowulf website and has produced a “true beowulf in a
box” – the Scyld Beowulf CD – that can be used to transform any pile of PC’s
into a beowulf in literally minutes.

By providing the sexy name, a useful website, and the related mailing list
they formed a nucleation point for all the users of PVM and MPI who were tired
of programming in parallel on networks of expensive hardware with proprietary
and expensive operating systems (like those offered at the time by IBM, DEC,
SGI, Sun Microsystems, and Hewlett-Packard) only to have to buy the whole
thing over and over again at very high cost as the hardware evolved. Once
Linux had a reasonably reliable network and Intel finally managed to produce
a mass-market processor with decent and cost-beneficial numerical performance
(the P6), those PVM/MPI users, including myself, rejected those expensive,
proprietary systems like radioactive waste and joined with others of a like mind
on the beowulf list. This began an open source development/user support cycle
that persists and is amazingly effective today.

It is this last contribution, the clear articulation of the idea of the Linux-
based beowulf and the focusing of previously disparate energies onto its collab-
orative development that is likely to be the most important in the long run,
as it transcends any particular architectural contributions made in association
with the original project. It is an idea that is finally coming to a long awaited
maturity – it appears that a number of Linux distributions are going to be
providing integrated beowulf/cluster software support “out of the box” in their
standard distributions quite soon (really, they largely have for some time, al-
though there have been a few missing pieces). The Scyld beowulf is just the
first, and most deeply integrated, of what I expect to become many attempts to
make network parallel computing a fully integrated feature of everyday Linux
rather than something even remotely exotic.

Beowulfs have always been built from M2COTS hardware, which is by def-
inition readily available. Soon beowulf support will similarly be in M2COTS
box-set Linux distributions (instead of being scattered hither-and-yon across
the web). That takes care of the hardware and software side of things. All
that’s missing is the knowledge of how to put the two together to make be-
owulfs work for you, a hole that I’m shamelessly hoping to exploit, errrm, uh,
“fill” with this book25. With all this to further support parallel development,
can commercial-grade parallel software be far behind?

With imitation being the most sincere form of flattery, it is amusing that

23Don, et. al. also wrote a book on building a beowulf that is better than mine. So you
should buy it. Be aware, though, that it isn’t as funny.

24See www.scyld.com, duh!
25Don’t be fooled. I’m in it for the money. Buy this book (even if you’re reading a free

version from the web). Look, I’ll even sign it!
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the beowulf concept has been transported by name to other architectures, some
of them most definitely not open source on COTS hardware (there are FreeBSD
beowulfs, NT based “beowulfs”, Solaris based “beowulfs”, and so forth, where
I quite deliberately put the term beowulf in each of these latter cases within
quotes to indicate my skepticism that – with the exception of the FreeBSD
efforts – the clusters in question could truly qualify as beowulfs26.

Not that I’m totally religious about this – a lot of the clusters I’ll discuss
below, although COTS and open source, are not really beowulfs either although
they function about the same way. I am fairly religious about the open source
part; it is a True Fact that nobody sane would consider building a high perfor-

mance beowulf without the full source of all its software components, especially
the kernel. I also really, really like Linux. However, even ignoring the historical
association of beowulfery and Linux, there are tremendous practical advantages
associated with access to the full operating system source even for people with
mundane needs.

Issues of control, repair, improvement, cost, or just plain understandability
all come down strongly in favor of open source solutions to complex problems
of any sort. Not to mention scalability and reliability. This is true in spades
for beowulfery, which tends to nonlinearly magnify any small instability in its
component platforms into horrible problems when jobs are run over lots of nodes.

If you are foolish enough to buy into the notion that WinNT or Win2K (for
example) can be used to build a “beowulf” that will somehow be more stable
than or outperform a Linux-based beowulf, you’re paying good money27 for an
illusion, as you will realize very painfully the first time your systems misbehave
and Microsoft claims that it Isn’t Their Fault. They could even be right. It
wouldn’t matter. It’s out of your control and you’ll likely never know, since long
before you find out your patience will be exhausted and you’ll go right out and
reinstall Linux on the hardware (for free), do a recompile, and live happily ever
after28. Use the NT CD’s (however much they cost originally) for frisbees with

26To quote from the beowulf FAQ assembled by Kragen Sitaker:

1. What’s a Beowulf? [1999-05-13]

It’s a kind of high-performance massively parallel computer built primarily out
of commodity hardware components, running a free-software operating system
like Linux or FreeBSD, interconnected by a private high-speed network. It con-
sists of a cluster of PCs or workstations dedicated to running high-performance
computing tasks. The nodes in the cluster don’t sit on people’s desks; they are
dedicated to running cluster jobs. It is usually connected to the outside world
through only a single node.

Some Linux clusters are built for reliability instead of speed. These are not
Beowulfs.

See http://www.dnaco.net/∼kragen/beowulf-faq.txt
27Quite a lot of good money, at that. Goodness, wouldn’t you much rather give some of

that money to me by actually using Linux instead and buying this book with a tiny fraction
of what you save?

28This is not really a fairy tale. Occurences frighteningly close to this have been reported
from time to time on the beowulf list. Remember, for a beowulf to be useful, its nodes have
to have a low probability of crashing during the time of a calculation, which can easily be
days or even weeks. Does this match your experience of Win-whatever running anything you
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your dog, or as coasters for your coffee cup29.
At this point in time beowulfs (both “true beowulfs” and beowulf-style

M2COTS clusters of all sorts) are proven technology and can easily be shown
to utterly overwhelm any other computing model in cost-benefit for all but a
handful of very difficult bleeding edge computational problems. A beowulf-style
cluster can often equal or even beat a “big iron” parallel supercomputer in per-
formance while costing a tiny fraction as much to build or run30. The following
is a guide on how to analyze your own situation and needs to determine how best
to design a beowulf or beowulf-style cluster to meet your needs at the lowest
possible cost. Enjoy.

like? Enough said. Linux nodes (to my own direct and extensive experience) don’t crash.
Well, they do, but most often only when the hardware breaks or one does something silly like
exhaust virtual memory. Uptimes of months are common – most linux nodes get rebooted for
maintenance or upgrade before they crash.

29Actually, I favor them for demonstrations of fractal patterns burned into the foil in high
voltage discharge involving Tesla coils built by my students. Fascinating.

30By “tiny fraction” I mean as little as a few percent. If the “top500” supercomputing list
ranked computers in aggregate calculations per second per dollar, instead of just in aggregate
calculations per second (hang the cost), big-iron solutions likely wouldn’t even make the list.
Beowulf-style clusters would own it.



Chapter 2

Overview of Beowulf Design

In the Introduction, a simple recipe was given for building a beowulf. In many
cases this recipe will work just fine. In others, it will fail miserably and expen-
sively. How can one tell which is which? Better yet, how can one avoid making
costly mistakes and design an affordable beowulf that will work efficiently on
your particular set of problems?

By learning, of course, from the mistakes and experience and wisdom of oth-
ers. This is presumably why you are reading this book. Although beowulf design
isn’t impossibly complex – beowulfs have been built by high school students,
hobbyists, scientists and many others without anything like a degree in systems
or network engineering – neither is it terribly simple. It is therefore useful to
present a brief overview of beowulf design before we get into the nitty-gritty
details that make up much of the next three parts.

Let’s begin by setting out a more complex recipe for building a beowulf.

2.1 Beowulf Design Protocol

The primary question to be answered while designing a beowulf is whether or
not any beowulf (or cluster, or parallel supercomputer) at all will be useful
for solving your problem. Some problems parallelize beautifully and simply.
Others parallelize well, but not at all simply. Most computational “problems”,
objectively speaking, probably don’t parallelize at all, or at least not well enough
to benefit from a parallel execution environment that costs any money at all to
set up.

For this reason the design process reads a bit like a game – go forward two
steps, go back three steps, quit (you lose). This cannot be helped. Engineering
is a back and forth process, and even a power hammer like a beowulf simply
won’t drive a single-threaded screw1. The most expensive mistake you can make
is building a beowulf for a problem and then discovering that it doesn’t speed
up the solution at all, or even slows it down.

1So to speak...
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The following protocol will help you avoid this and other expensive mistakes,
and should guide you in your reading of the parts and chapters of this book.

2.1.1 Task Profiling and Analysis

The first step in building a beowulf is studying the task you wish to use the
beowulf to speed2. It really shouldn’t be that surprising that the intended
function dictates the optimal design, but newbies joining the beowulf list almost
invariably get it wrong and begin asking “What hardware should I buy?” which
sort of answers itself as the last step of this protocol. The One True Secret to
building a successful beowulf, as recited over and over again on the beowulf list
by virtually every “expert” on the list3 is to study your problem and code long
and hard before shopping for hardware and putting together a plan for your
beowulf.

This “secret” is not intended to minimize the importance of understanding
the node and network hardware. Indeed, a large fraction of this book is devoted
to helping you understand hardware performance issues so you can make sane,
informed, cost-beneficial choices. However, it is impossible to estimate how
hardware will perform on your code without studying your code, preferrably by
running it on the hardware you are considering for your nodes. In later chapters,
concrete examples of code will be given that run at very different relative speeds
on a selection of the currently available hardware4.

The word “study” is used quite deliberately. It means to, if at all possible,
use measurements and prototyping more than back-of-the-envelope estimates5.
Measurements are far more valuable than any theoretical estimate, however well-
informed. A small prototype can save you from all sorts of terrible mistakes,
and when a “successful” prototype is finally built, it can can often be scaled up
to the final size required6

The “study your code” formula above brings to mind a vision of a pocket-
protector-loaded geek poring over line after line of program text on green and
white lineprinter paper in a dark smoky room with a can of Jolt cola in one
hand and a programmer’s reference in the other. At least to Old Guys like me.
However, this is not at all what I meant. I actually meant one to visualize a
pocket-protector-loaded geek poring over line after line of program text in a
smoke-free modern linux programming environment with minimally X (and a

2We’ll refer to “the task” although of course you may well want to build a beowulf to do
more than one task. In that case you will need to do most of the work associated with this
protocol for all the tasks and, if necessary, make trade-off decisions. Beowulves designed for
one task won’t always do well on another. Be warned

3...and a few bozo’s, like myself. Oops. Sorry. Inside joke...
4This “currently available” hardware, some of it fairly state of the art as of fall 2000, is

probably obsolete by the time you read this. Your pocket calculator is likely faster if you’re
reading this in 2005. Sigh.

5You’ll have to learn to make back-of-the-envelope estimates, though, so start saving those
old envelopes. More on this later.

6Noting carefully that scalability of the prototype and your code is one of the things you
should be measuring on the prototype, so that the term “often” should properly be “always”.
Except when it doesn’t work, of course.
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whole bunch of window panels and desktops), gcc and friends, a debugger or
two, emacsoid editors, and/or a ddd-like integrated program environment, with
a can of Jolt cola in one hand and the keyboard in the other. Real programmer
geeks don’t need a hardcopy language reference. That was what should have
given it away.

The point is, that to quantitatively study your code you have to get serious

with some of the software development tools that you may well have largely
ignored before. I should also point out that even beyond just studying your
code, you have to to study your task. Even if you have implemented your task
in a perfectly straightforward piece of code that a lobotomized lunatic could read
and understand, it may be poorly organized to run in a parallel environment.
On the other hand, some horribly convoluted rearrangement of the code that
you’d never in a million years write in a single-threaded environment (and that
a non-lobotomized certified genius might have difficulty understanding) may be
just great in a parallel computing environment.

I will now and henceforth assume that you know nothing about parallel code
design or parallel task execution. Since I (truly) don’t know that much more
than nothing, I’m going to try to teach you what little I know, and where to
learn more. Accept the fact that if you have a “big” project in mind, you will
have to learn more. I mean it. Real Parallel Algorithms are the purview of Real
Computer Scientists (where I am a “Sears” computer scientist at best7) and
you’ll need to find a book by a real computer scientist or two to learn about
them. A number of such books are listed in the Bibliography and indicated in
the text in context. Alternatively, you can hire a real computer scientist, if can
get approval from your fire marshall and the local board of health8.

Once you have a linux-workstation set up to do the requisite study you can
either design a program from scratch to be parallel (a great idea when possible)
or, more likely, take an existing serial program and start to parallelize it. To
parallelize the program and to inform the beowulf design process, you must
begin by identifying how much time is being spent in a serial code description
of the task doing work that could be done in parallel and how much time is
being spend doing work that must be done serially. If the linux workstation you
are working on is at all “like” what you think you might need for a node (after
reading through this whole book) so much the better.

In all likelihood you have no idea how long it takes for your (or any) computer
to do any of the work in your task. Neither do I. So we must find out. This
is accomplished by profiling your task. The way to profile a simple serial task
using Gnu tools (gcc and gprof) is illustrated in detail in a chapter below.

I’M WRITING RIGHT HERE – THE REST OF THIS CHAPTER IS IN
TOTAL FLUX...

Task profiling is covered in a chapter below.
Use Amdahl’s Law (covered in a chapter of its own) to determine whether

7As well as being an aging Zappa fan...
8Just kidding, again, jeeze, can’t you take a joke? Seriously, real computer scientists are

likely to look just like your average, run of the mill pocket protector adorned geek. You can
hardly ever pick one out of a crowd of geeks just by looking.
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or not there is any point in proceeding further. If not, quit. Your task(s)
runs optimally on a single processor, and all you get to choose is which of the
various single processors to buy. This book can still help (although it isn’t its
primary purpose) – check out the chapter on “node hardware” to learn about
benchmarking numerical performance.

2.1.2 Parallelizing your Code

2.1.3 Building Price and Performance Tables

2.2 Protocol Summary

1. Profile and Analyze Task(s) for Parallelizability:

(a) Profile your task(s). Determine how much time is being spent doing
work that could be done in parallel and how much time is being spend
doing work that must be done serially. Task profiling is covered in a
chapter below.

(b) Use Amdahl’s Law (covered in a chapter of its own) to determine
whether or not there is any point in proceeding further. If not, quit.
Your task(s) runs optimally on a single processor, and all you get to
choose is which of the various single processors to buy. This book
can still help (although it isn’t its primary purpose) – check out the
chapter on “node hardware” to learn about benchmarking numerical
performance.

2. Parallelize your code:

(a) Just splitting up the serially written routines in your original task
(as you probably did to get your first estimate of potential parallel
speedup) isn’t particularly optimal – one has to adopt “real” parallel
algorithms to gain the greatest benefit. Consult one of the resources
in the bibliography to learn about parallel algorithms.

(b) Figure out how much information will have to be communicated be-
tween the various subtasks being done in parallel, and estimate how
long it take for those communications to be completed with various
kinds of networks.

(c) Parallelizing added some time to the serial and parallel time estimates
again, so recalculate them.

(d) Some of the tasks finish at the same time, some don’t. Sometimes
we have to wait for everything to be done and resynchronize (at
“barriers”), sometimes we don’t. Add in and estimate for all the
serial time wasted waiting for things to finish up and so forth.

(e) Use the more detailed forms of Amdahl’s Law given in the chapter
to determine whether or not there is any point in proceeding further.
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If the answer is unequivocally no, then quit. Give it up; use a single
processor that is as fast as you can afford or need.

Note that these first two steps can be greatly shortened (to approximately
zero) if there already exists a decently written parallel version of your
code. Quite a lot of parallel code already has been written by various folks
around the world. Look around in the chapter on parallel applications and
ask on the beowulf list before tackling a new parallelization project – you
might find that your particular wheel has already been invented or that
some other wheel can, with a little regrinding, be made to serve as a
template for your own.

3. Build Tables:

(a) Build a single node performance table for as many candidate nodes
as you wish or can afford, using measurements where you can and
calculated estimates where you must.

(b) Build an estimated multinode performance table for as many net-
works as you wish or can afford, using measurements where you can
and calculated estimates where you must.

(c) All your answers in the previous step depended on a certain program
size. Sometimes making a program “bigger” makes it parallelize more
efficiently (explained below in the Amdahl’s Law chapter). Deter-
mine the approximate effect of scaling up the task size and varying
the number of nodes in your multinode performance table.

(d) Attach costs and determine benefits as weights and transform the
multinode performance table into a cost-benefit table (covered in a
chapter of its own).

4. Design your Beowulf:

(a) Determine your performance threshold.

(b) Determine your price threshold.

(c) Select the beowulf (or cluster, or even dedicated parallel supercom-
puter – if necessary) design that optimizes price performance.

Simple, really. You figure out if your computational task can be sped up
“at all” by parallelizing it under ideal circumstances. You figure out pretty
much how to parallelize it, up to and including writing or finding or adapting a
parallel version of the computational code. You then do a cost-benefit analysis

of the alternative ways to get the work done9.
This is a bit oversimplified, of course. For example, the best parallel algo-

rithm to choose for certain numerical tasks depends on things like the size of

9This isn’t just a sane way to design beowulfs, it is a sane way to get nearly any major
task done. Analyze the problem. Tabulate solutions. Weight solutions with costs, benefits,
risks. Choose.
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the task and the relative speeds of numerical operations and IPC’s, so using one
particular one for all the different combinations of node and network hardware
isn’t likely to give you a global optimum in price performance. The price perfor-
mance is a function of many variables – the problem itself, the node design (and
all the variables that describe a node), network design (and all the variables
that describe the network, including e.g. the topology), and the algorithms and
methodology used to parallelize the problem. Furthermore, it is a nonlinear

function of all of those variables – sometimes changing something a tiny bit at
very low cost or no cost at all can double overall performance. Or halve it.

Still, the general approach above should suffice to get you into the vicinity

of an optimum solution, which is generally good enough. In particular, it will
give you a very reliable answer to the question of whether or not you can afford
to build a beowulf that will run your problem satisfactorily faster. If the answer
is yes (and often it will be) then some strategic prototyping and parametric
tweaking will often let you do even better.



Chapter 3

Organization of this Book

In order to implement the protocol outlined above, you need to fully understand
certain things about parallel programming in general. You also need to know
how to quantitatively assess hardware perforamnce, both for the nodes and for
the network. The next two parts of the book cover both of these points in de-
tail. The third part of the book addresses the issues of comparative beowulf or
cluster design – putting what you’ve learned about the task, the node hardware
and the network together into a plan. This part also discusses potentially ex-
pensive design issues that are all too often forgotten – infrastructure costs and
requirements, how to systematically compare the cost-benefit of designs, what
to do with your beowulf as it ages.

The fourth and fifth parts of the book contain descriptions of and directions
to whole “beowulf solutions”. Again this is split into chapters on software
– discussions of general parallel programming paradigms, examples of specific
programs written to do HPC tasks; and hardware – how to craft a beowulf
appropriate for different environments and purposes by yourself and how to
find somebody who will do it for you (at a reasonable value-added markup).

The appendices and bibliography contain all sorts of useful stuff – URI di-
rections to packages, source for various scriptlets that you might find useful.
As this is intended to be a “living book” in the sense that it is continuously
updated as new hardware and software appears, appendices may be used as a
holding pen for new stuff before it makes it into the “mainstream” text. Even
if you own a printed copy of this book, you might periodically check the online
master from time to time to see if it has anything radically new.

At this point it is time to begin the serious work. We begin, appropriately
enough, with a bit of mathematics. It isn’t too difficult, but it is essential to the
understanding of the principles of parallel program design – and the optimum
design of a cluster intended to run the parallel program on.
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Part II

Parallel Programs
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Chapter 4

Estimating the Speedup:
Amdahl’s Law

4.1 Amdahl’s Law

As noted earlier, the notion of speeding up programs by doing work in parallel
(which is the basis of all beowulfery) is hardly new. It dates back to the earliest
days of computing, when all computers were so damn slow1 that people with big
pieces of work to do really wanted to speed things up. IBM (which made just
about all computers at the time and for a considerable time afterward) wanted
to speed things up by doing things in parallel (to sell more computers), but
rapidly found that there were some fairly stringent restrictions on how much of
a speedup one could get for a given parallelized task. These observations were
wrapped up in Amdahl’s Law, where Gene Amdahl was an IBM-er who was
working on the problem.

To grok2 Amdahl’s law, we must begin by defining the “speed” of a program.
In physics, the average speed is the distance travelled divided by the time it took
to travel it. In computers, one does “work” instead of travelling distance, so
the speed of the program is sensibly defined to be the work3 done divided by

1They were really big and really slow. Your pocket calculator or your kid’s Nintendo
today could probably out-calculate them, and might even have a bigger memory and better
programming language. However, Moore’s Law, which is another IBM invention, has made
computers smaller and faster ever since almost like a law of nature. Moore’s Law is discussed
a bit later in the text.

2Literally, “to drink”. See Robert A. Heinlein’s “Stranger in a Strange Land”. Properly
speaking, it would be more correct of you to grok some beer while working on understanding
Amdahl’s Law. If you have a fridge handy, go on, get a cold one. I’ll wait.

3Physics purists beware: Yes, this really should be called the “power” of a computer
program, not the speed, and power would indeed be a more precise term for what it describes,
even though this “work” has nothing to do with force through distance. Work is used in the
sense of accomplishing some set of tasks with no proper underlying metric, but ultimately it
is related to a sort of free energy.
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the time it took to do it:

R =
W

T
(4.1)

where R is the speed (rate), W is the work, and T is the time.
Now we must consider “serial work” and “parallel work”. To properly un-

derstand all the picky little engineering details of a beowulf we must begin by
thoroughly understanding how to “parallelize” a task. Obviously I don’t want
to talk about parallelizing a computer program as my example. If you already
know how to parallelize computer programs, why are you reading this book
(except maybe for a good laugh)?

For better or worse, the example task I’ve chosen to demonstrate parallel
and serial work is one that I hope all of my readers have undertaken at some
point in their lives. It is utterly prosaic, yet it holds important lessons for us.
A very Zen thing.

Let us (therefore) imagine that we are building a model airplane. Just in
case some of you have never built model airplanes, allow me to describe the
standard procedure. First you open the box. Inside is a set of instructions4

that are usually numbered 1, 2, 3 and so on. There are three or four plastic
“trees” with little-bitty molded plastic parts from which one assembles wheels,
wings, propellers or jets, the cockpit, and sometimes a stand5. There is usually
a sheet of decals as well, that one usually puts on at the end to put strange
things like the numbers U94A on the tail and a shark’s mouth on the front.
One needs to provide a workspace containing a brain (yours)6 and things like
fingers, a sharp instrument for cutting the plastic free from the trees, glue, and
possibly paint7.

Serial computational work is like building the airplane from the pieces, fol-
lowing the instructions one at a time, in order. First we assemble the body.
Then we assemble the cockpit. Then we build and attach the left wing. Then
we build and attach the right wing. Then we build the tail section. And so
on. Sometimes you can do things a bit out of order (build the right wing and
then the left wing, for example). Other times building things out of order will
leave you pulling the airplane apart to insert the wheel assemblies into the body
sockets before gluing the body halves together. Occasionally one has to put
parts aside and wait for ill-defined periods (like for the glue to dry for some
sub-assembly) before proceeding. All of these have analogs in computation. In
fact, I’m going to beat this metaphor half to death in the following pages, so I
hope you liked building model airplanes way back when.

Suppose now that you are building the airplane with a friend. Only one of
you can build the body, as there is only one body. Only one of you can build
the cockpit. But there are two wings...

Aha! We’ve discovered parallel work. You hand the instructions and parts
for one wing to your friend and you both build one wing each at the same time.

4Aha! he says; the program!
5The data, obviously.
6CPU
7Tools and peripherals for executing the instructions.
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Then you attach them one at a time. If you do nothing else in parallel, you
complete your airplane in a time shorter than what it would have taken you
working alone by (approximately) one wing! Wowser!

Is this the fastest you could have built it with your friend’s help? Probably
not. There are also several wheel assemblies that could be built at the same
time. Also, perhaps you could have worked out of order, with him building the
tail or the display rack while you built the cockpit. He might have had to wait
a bit for you if he finished earlier, and while he was waiting he might have been
able to attach propellers to the engines or attach decals. Or, one might have to
put the wings on after the cockpit and before the decals for some reason, so he
may have just had to wait until the cockpit was done to do something useful.

If one pauses for a moment to think about it, we automatically parallelize
all sorts of tasks in our daily lives as a matter of simple survival8. One way
or another, a given organization of any task has some time spent performing
subtasks that can be done only serially (one subtask after another in just one
workspace) and some time spent performing subtasks that could be done in
parallel (using more than one workspace to independently work on different
sets of sequential subtasks). There are obviously lots of ways to split tasks up,
and what works best depends on many things.

Running a program on a computer is also executing a series of small tasks
specified by instructions (code) that cause an agent (the CPU) to act on parts
(data) in some environment (the computer) equipped with a set of tools (the
peripherals) just like building a model airplane. If we identify the serial and
parallelizable parts, we can then rewrite our equation for the rate at which a
single computer processor can complete a particular piece of work W as:

R(1) =
W

Ts + Tp
(4.2)

where Ts (the serial time) is the time spent doing things that have to be done
one after another (serially) and Tp (the parallel time) is the time spent doing
things that might be doable in parallel. The “1” just indicates the number of
processors doing the work.

Now, even with “perfect” parallelization and many (P ) processors, the pro-
gram cannot take less than Ts to complete. Even if the entire population of the
world were in your kitchen while you were working on the model airplane, you
have to complete the body yourself, one step at a time. The best you can do is
let all those folks work on the wings and the tail and so forth while you work
on the body so as much is done in parallel as possible when the time comes to
take the next serial step in assembly. Obviously, the absolute most that having
friends help can do for you is reduce the time required to complete the parallel

8Think of it as an assignment for the conceptually challenged. I know you’re busy, but
you’re going to have to do your homework if you expect to learn from this course. So put on
the stereo, make sure the dinner in the oven, start a load of laundry, pop open a beer, and
while all that is going on write down three or four ways you parallelize tasks in your home or
office.



42 CHAPTER 3. AMDAHL’S LAW

work to zero (in fact, you can never quite reach zero). The maximum rate of
work one could EVER expect to see with the help of your friends is thus:

R(∞) <
W

Ts
(4.3)

Believe it or not, when we add a single variable (the number of friends you
have to split up the parallelizable work with), this simple observation is:

Amdahl’s Law (Gene Amdahl, 1967)

If S is the fraction of a calculation that is serial and 1 − S the
fraction that can be parallelized, then the greatest speedup that can
be achieved using P processors is: 1

(S+(1−S)/P ) which has a limiting

value of 1/S for an infinite number of processors.

where the result is expressed in fractions of the time spent in the distinct serial
or parallelizable parts of a calculation:

S =
Ts

Ts + Tp
=

Ts

Ttot
(4.4)

(1 − S) =
Tp

Ts + Tp
=

Ttot − Ts

Ttot
. (4.5)

Since we’re going to derive complicated variants of this law (that are much
better approximators to the speedup bounds) we’d better see how this is derived.
We note that the best we can do with parallel work is split it up into P pieces
that are all done at the same time so that the ideal time required to complete
it turns into Tp/P . The rate of completion of our task with P processors then
becomes:

R(P ) =
W

Ts + (Tp/P)
(4.6)

The “maximum speedup” Amdahl refers to is just the ratio R(P )/R(1):

R(P )/R(1) =
1

(Ts + (Tp/P))/(Ts + Tp))

=
1

S + (1 − S)/P )
(4.7)

making the obvious substitutions for S and (1 − S).
Note again that this is the best one can hope to achieve unless the very act

of parallelization changes the algorithm used to do the parallel work and/or
the hardware interaction into something that reduces Ts (which can happen)9.
No matter how many processors are employed, if a calculation has a 10% serial
component (or S = 0.1), the maximum speedup obtainable is 10. If you spend
half the time building an airplane doing things that only one person can do,
the best speedup you can hope for is for all the other tasks to be done in zero
additional time by an infinite number of friends, for a speedup of two.

9That is, ahem, (in case you weren’t paying attention): “Barring the occurence of a con-
dition such that the law is false, it is true,” right? Hmmmm...see the chapter on Bottlenecks.
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4.2 Better Estimates for the Speedup

Of course, reality is generally worse than the highly optimistic upper bound
predicted by Amdahl’s Law10. After all, imagine how long it would take you to
actually build that model airplane if the entire population of the world WERE
in your kitchen trying to help. “Forever” might be a reasonable answer as you
(and your kitchen) are crushed beneath the weight of all that help. “Forever”
is the generally correct answer for parallel processing, too.

There are lots of ways to divvy up the work, and the process of divvying
up the work itself takes time. It is also entirely possible to reach fundamental
limitations on how far you can subdivide a finite task made of discrete parts
(imagine a billion hands on one model airplane that has, after all, only forty or
fifty parts that are typically connected by glue bonds made between two objects
at a time). There are technical details concerning the order in which subtasks
have to be completed that can prevent the parallel work from being cleanly
divisible among nodes11. And so on. The following analysis works through a
few of the simpler and more obvious corrections that we have to consider when
parallelizing a task.

One way of looking at all of these corrections is that accounting for all the
extra time spent setting up and executing a parallelized task changes the serial

and parallel fractions! We might expect to see new terms being added to or
taken away from the S fraction. Alternatively, thinking about the time it takes
to complete the various chores in a team effort, we left out a bunch of times

that may well be important. Indeed, in many cases (or scales) these additional
times may be dominant – the most important thing that determines the rate or
relative speedup.

To understand some of the times we continue with our example of building
a model airplane. Note that in our original speedup estimate we ignored the
time that it took you to give your friend the wing part of the kit and take back
the completed wing. Well, if it takes your friend twenty minutes to build a wing
and twenty seconds total to receive the parts and hand back a finished wing,
that’s probably ok. Your final time estimate is twenty seconds longer than you
thought, but compared to twenty minutes that’s not too big an error.

What if your friend lives next door and is not in the kitchen with you? You
have to get up, take him the wing parts and a tube of glue, come back, and go to
work. As soon as he finishes, he has to get up and bring you the finished wing.
Now it might take five minutes to take him the wing parts and five minutes to
come back and get to work and suddenly you’ve spent ten minutes setting up

10Except in those very rare cases and small ranges of P where it is better, see previous
note. Actually, a bigger danger is that a parallel version of your code will be so different from
the original serial version that Amdahl’s Law is no longer relevant as there is little left of the
original “serial fraction” of code. Unless you bother to write a useless “serial” version of the
parallel code, you’re comparing apples to orangutan’s.

11Did you ever glue down the cockpit canopy and then learn that first you should have
glued in the little bitty pilot-in-a-chair assembly?. Oops. The cockpit-canopy gluedown step
has to wait until the pilot-in-a-chair is done even if it means that you or your friend remains
idle.
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a parallel process designed to save you twenty minutes. That ten minute net
savings might also be relative to an hour’s total labor if you did it all yourself.
Not too good.

At least you’re still in the black – you finish your airplane faster than you
would have without your friend. On the other hand, if he lived on the other
side of town (a ten minute drive either way) it would take you much longer to
complete the airplane with his help than it would without it. Whoa! We can
actually lose ground and slow a program down by parallelizing it! Amdahl’s Law
(which at least permitted all speedups strictly greater than 1 for any value of
P ) is way too optimistic.

We’ve discovered a couple of new ideas in our corrected model airplane
example, and we’ll now proceed to incorporate them into our algebraic discussion
of times and rates and speedups and such. The most important is the analogy
of “Inter Processor Communications” (IPCs) – this is the communications step
where one processor (you) sends part of the program and/or data (the wing parts
and glue and instructions for assembly) to another processor (your friend), and
later get back a finished wing. In all parallel code, SOME sort of IPC’s are
necessary. They can take a long time compared to the time actually required
to do the parallel work or they can take a short time compared to the time to
do the parallel work.

In some very important cases this communication process can be done only
one or twice and may take a very short time compared to the time working
in parallel, for example at the beginning and the end of a calculation. In all
cases, though, the program itself and initial data has to somehow get to the
processors working in parallel and the results of their parallel work have to be
reunited into some finished whole. IPC’s are definitely essential to the notion
of parallel processes.

And12 they take time. And13 for us to correctly estimate the speedup of a
parallelized program, we have to insert the time required, since it may well be
significant.

In fact, if we think about it, it costs us time at least TWICE, in fundamen-
tally different ways. Parallelizing a program, we generally increase by a bit the
time required to complete the serial fraction. If we have P friends waiting to
take various airplane parts that are originally in our possession and build them,
we may well have to carry the parts and instructions and glue to each one, one
after the other. The more friends, the longer this takes. Overall, this time
thus scales like the number of friends (or worse) and, if you are also responsible
for doing the serial work it adds directly to the serial time because you’re not
working on the airplane at all while you’re carrying parts around and collecting
finished sub-assemblies.

We also have to increase the time required to execute the parallel task on
each node a bit over what it would have taken serially. It takes you a certain
amount of time (already accounted for in the original serial time estimate) to put

12I know, I know, I started a sentence, nay, a whole paragraph, with a conjunction. Again,
really. Bad habit. Naughty me.

13Oops, did it again. But who cares?
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newspapers on the table14, get the glue open15, and read the overall instructions
– your friend also needs to spread his own newspapers on his own table 16, open
the glue, and read the general instructions for himself before he can get started
on building his wing from the wing-specific instructions. It might take him a
few minutes to do these things and we have to increase the time it takes for
“wing building in parallel by a friend” over the time it takes for “building each
wing as part of sequentially building the whole airplane yourself”. This time
usually does not scale up with the number of friends helping as they can all be
spreading newspaper, etc. at the same time. At the same time, it doesn’t scale
down – your friends can’t set up their worksites “in parallel” in less time than
it takes to set up a worksite.

Finally, you and your friend will almost certainly have to wait for each other
from time to time, as already illustrated above. If you finish one part that gets
glued to a part he’s working on as the next step, you have to wait for him. Or,
you may well be sharing resources. You may have to wait while he uses the
glue, for example, and a bit later he may have to wait for you to give it back.
In the meantime, you each may have to wait idle, although this often depends
on how the task is organized.

All this introduces new times and fractions and rates into our earlier state-
ment of Amdahl’s Law. Here’s a table to help you keep track of this menagerie
of variables:

Ts The original single-processor serial time.

Tis The (average) additional serial time spent doing things like IPC’s, setup,
and so forth, per processor, in all parallelized tasks.

Tp The original single-processor parallizable time.

Tip The (average) additional time spent by each processor doing just the setup
and work that it does in parallel. This may well include idle time, which
is often important enough to be accounted for separately.

The i subscript just reminds us that in many cases the bulk of Tis or Tip are due
to the burden of either IPC’s or idle time, although a lot of Tip can also come
from local subtask setup and other non-communications overhead. Note that
this is a simplified description of the times – in many cases practical discussions
of parallel task design split times a bit more finely and specifically and separately
count communication, computation, and idle time for all processors.

Using these definitions, we can write our modified task completion time when
using P processors:

Ttot(P ) = Ts + P ∗ Tis + Tp/P + Tip. (4.8)

14If you don’t put newspaper on the table first, you’re gonna get in trouble when your
mother comes home. Remember, I warned you.

15I told you. It always globs out like that when it first opens. You’re gonna be toast.
16Presuming, of course, that he has newspapers, a table, and a mother.
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In English (for the equation impaired): “The total time required to complete
a task that is parallelized on P nodes is the sum of the original serial time,
the average additional serial time per node times the number of nodes, the
original parallelizable time divided by the number of nodes doing the parallized
work, and the average additional time spent on each node to do its piece of the
parallelized task”. Nothin’ to it. We can do this.

To find the Amdahlian17 speedup, we again have to evaluate R(P )/R(1).
This time, being lazy, we’ll note that the W always cancels so we’re really just
evaluating (Ts + Tp)/Ttot(P ):

R(P )

R(1)
=

Ts + Tp

Ts + P ∗ Tis + Tp/P + Tip
. (4.9)

Now, if we were to be picky (and let’s be, just this once) this result, however
useful and marvelous, is still way too general (and hence incorrect) to be truly

useful and marvelous. We are in a bit of a quandry, though. Every time we add
a bit of detail, our speedup expression gets a bit more complex. This cannot be
helped, it can only be understood, however much work it takes to understand
it for your particular numerical task. In many cases, this expression will suffice
to get at least a general feel for the scaling properties of a task that might be
parallelized on a typical beowulf. In others, it won’t, and you’ll have to work
much harder.

As just a single (but very important) example of the latter, it is well-known
that certain numerical tasks require a pairwise exchange of information between
all nodes between parallel steps. Each pairwise communication might take a
time Tc (where I have no idea what the c subscript stands for, but it is different
from i, s, and p). If there are P nodes and each node can thus talk to P −1 other

nodes and we make the unhappy assumption that they are connected by a hub

that permits only one pair to talk in one direction at a time (no broadcasting
allowed), we find that the total serial IPC step requires P (P − 1) individual
pairwise communications each costing Tc, or

Tc,tot = P (P − 1)Tc = (P 2 − P )Tc (4.10)

which scales quadratically in the number of nodes, not linearly!
This, alas, goes in the denominator of our relative rate expression, which now

contains terms with powers of P that range from -1 to 2. Oooo18. Suddenly:

R(P )

R(1)
=

Ts + Tp

Ts + P ∗ Tis + Tp/P + Tip + (P 2 − P )Tc)
(4.11)

and I can just hear the math-challenged among you starting to whimper19

17Any noun in the English language can be verbed, and in many cases we can invent
adjectivish forms as well.

18Yes, the term with P ∗ Tis is still there. How do you think the program got to the nodes
or the results come home at the end?

19Relax, the point is that having P 2 in the denominator is baaaaaad if we want to speed
things up as P is increased. And those of you who are already parallel computation experts,
stop sneering. It’s rude.



47

This is by no means the only kind of scaling behavior possible. If N rep-
resents your problem “size” (for example, the length of a lattice side or the
number of items in a list to be sorted) then the work being split up can depend
strongly on N as well. There may well be (work and/or communication) times
that scale like N , other times that scale like N 2, and so forth. If you parallelize
the part that scales like N but not the part that scales like N 2, you might get
decent speedup for smallish N but at some value of N the N 2 will overwhelm
it.

Unfortunately, we’re just getting warmed up. Imagine what we might have
to write if we account for all of the times spent in all the parallelized subroutines
of a complex piece of code, including the effects of nonlinear determinants like
cache size, memory speed, memory size, context switching, communications
speed, communications latency, communications pattern, the need for points
of parallel code resynchronization (called “barriers”), and a whole lot more20.
Each little piece cranks a new term into our relative rate equation, or modifies
a term that is already there.

The final insult is that all of these times are totally algorithm dependent
and completely different algorithms are often “best” for parallel computations
than for serial computations. There are Clever Tricks that can often be used
to change the communications pattern and that produce quite different scalings
of the communication times and idle times. I told you that this sort of thing
carries over into the realm of Real Computer Sciencetm really quickly. Trying
to calculate all these terms and times, in detail, a priori for complex pieces
of code is well-nigh impossible, and few beowulfers (or other kinds of parallel
computer programmers) do it. Real Computer Scientists do, it appears (often
less for the result than for the papers they can publish describing the result),
and bless them for it since then we don’t have to.

However, there is no escaping the need to perform a few basic and practical

steps. The Wise Beowulfer will determine the P -scaling and N -scaling of the
times of at least the most important blocks of parallelizable code in your task(s)
(hopefully, your task will fall into some “generic” category discussed in detail
below, but you at least have to identify the category). The Wise Beowulfer
will at least think about the interaction between your hardware and networking
design and algorithm and these powers and times.

Let me conclude this chapter by showing you why you should bother with a
couple of practical – if somewhat contrived – examples.

Suppose you are charged with building a beowulf to carry out an “all pairs
communicate every step” task like the one described above that led to the
(somewhat naive) P (P−1)Tc time scaling for “all pairs one at a time” hub based
communications. Studying the problem, you rapidly learn that you can achieve
the same result (all pairs exchanging data) in (P −1)Tc time if a switch that can
support P/2 simultaneous bidirectional communications is used instead of a hub
(and P is even). Or you could try using a broadcast on the hub (if your software

20Don’t worry too much if you don’t know exactly what all of these are. I’ll discuss them
later, at least a little bit.
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parallel communications library supports a true hardware broadcast, a thing
that might require a prototype to validate since some libraries might implement
their group “broadcast” function as a series of pairwise communications to the
hosts in the group list), which would yield P ∗ Tc time. You also must consider
that Tc might be ten times smaller for a 100 Mbps hub than for a 10 Mbps
switch that costs about the same amount. Then there is a 100 Mbps switch
to consider, which costs a bit more. Then, we haven’t really considered the
algorithm. Depending on the message sizes, the latency, and a few very esoteric
things, there are algorithms that might reduce the P 2 to (e.g.) P log P even
for a hub (or parallel library) with no broadcast. Finally, we haven’t worried
about how to program a synchronized transfer like the one required to obtain
optimum time through a switch. All the nodes have to be talking at the same
time and to just the right node, in both directions, to get the improved node
scaling, and this is not at all easy to arrange.

Your job, your future, your health and your happiness all ride on making
the right choice here. Which one do you buy?

One is tempted to say “the 100 Mbps switch”, and for many problems (pos-
sibly most) this would be the correct answer. That’s why it is in the “recipe”
given at the very beginning. It is relatively cheap and adequate to give decent
scaling (both power and base time) for many problems. However, if you can
only afford eight nodes, and you’re doing a problem where 8 ∗ 7 ∗ Tc � Tp/8 for
a 10 Mbps hub, the correct answer might be to get the cheapest damn thing you
can lay your hands on. There are times when the answer could even be “who
needs a hub” – early PC-based “beowulfish” computer efforts not infrequently
involved a floppy disk carried around to a bunch of computers by hand21. Pop
in the floppy, merge the data, carry it around, and when it is all shared start
another week-long run on all the computers involved.

In quite a few cases, though, the correct answer would be a far more expen-
sive gigabit (per second) switch, like Myrinet or perhaps gigabit ethernet. If you
want to be able to scale up to “lots” of nodes (say 64 or more) it may be crucial
to reduce Tc by an order of magnitude and obtain the most favorable P -scaling!

This illustrates just a few of the realities confronting the would-be beowulf
designer. In some cases you can derive an approximate scaling form for the rela-
tive rate equation appropriate for your particular algorithm and communication
pattern. In other cases (most cases, really) you are far better off looking it up
(along with a whole lot of other stuff) in a real book on parallel computation22.
The reason you should consider looking things up is because there are smart and
stupid ways to do simple little things like multiply matrices in parallel or send
a message between all nodes in between program steps. Some of them are very

21An early networking protocol known as “sneakernet” that is in not infrequent use even
today. My earliest parallel computing efforts used sneakernet.

22For example, the one by Amalsi and Gottlieb, from which I cribbed a lot of this
stuff. Or there are some great resources on the web, for example the excellent online
book on designing parallel programs by Ian Foster at Argonne National Labs, http://www-
unix.mcs.anl.gov/dbpp/. This latter resource is particularly awesome (and free) and will be
ignored only by the terminally ignorant.
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non-intuitive – you’ll never invent them on your own23. This is what Computer
Scientists (the real variety) live for. C’mon, give them their moment of glory.

Once you have the scaling form of the relative speedup appropriate to your
algorithm and the various network media types you are considering you can use
it (and some measurements) to make estimates for the speedup possible for a
parallelized chunk of code. This is less difficult than it sounds. In practice, all
this mathematical work isn’t so daunting – usually most of the parallelizable
work is done in just a few program blocks and all the surrounding serial code can
be added up at once into the irreducible serial work and the irreducible serial
time. In a lot of cases, in fact, there will be just one parallelizable block. In the
best cases the whole program can be converted to a parallel block, where the
only required serial code is something to start a lot of programs in parallel and
collect the results. These are called “embarrassingly24 parallel computations”.

Although embarrassingly parallel computations are important enough to be
given their own acronym (EPC) and to be considered in detail later, we’ll take
a moment to think about them here as well as they have an important lesson
for us to learn before we leave the discussion of mathematical estimates of
rates and so forth behind. To understand them we can return to Our Favorite
Metaphor by thinking of building lots of identical model airplanes with our
friends. One can get great parallel efficiency (another way of saying “a speedup
like R(P )/R(1) ≈ P”) by just getting P friends into a room25 and giving each
one their own kit and glue. If it takes you ten minutes to distribute 100 kits, and
your “nodes” build 100 airplanes in one hour more, you’ve built 100 airplanes in
and hour and ten minutes, for a speedup a hair less than 100. Not bad compared
to the 100 hours it would have taken you to build them all one at a time, and
you didn’t even need to get glue on your own fingers. If you have 1000 friends26

and can still distribute all the kits in an hour or so (good luck), your gains get
even better.

The model airplane construction, in this case, is being run as an embarrass-
ingly parallel task. Now you know what the phrase means. One processor starts
P essentially identical jobs (on other processors) all at once, then kicks back for
a relatively long time (perhaps sipping a metaphorical brew or two, perhaps do-
ing a job itself) until they all complete, and then collecting the results. Repeat
until finished, with near perfect scaling. Technically, we’ve arranged things so

23Unless, of course, you are really very smart or a real computer scientist (in which case
you’re probably sneering at this miserable excuse for a real book on computer science) or
both. I mean, somebody invented them, why shouldn’t you reinvent them? Seriously, check
out Ian Foster’s collection to see why.

24One must, of course, get over your embarrassment if your task turns out to be embar-
rassingly parallel. It’s like being embarrassed at being a billionaire or being endowed with a
perfect life and great health while others in the world lead flawed lives. A moment or two is
all right (to show that you’re compassionate), but then it becomes maudlin. Look, the work I
do in my physics research is embarrassingly parallel. There, I admitted it. You can too. Let
it all out. Maybe we’ll start a support group.

25Which had better be larger than your kitchen unless P is pretty small.
26If you have 1000 friends, of course, you’d never be reading this. You’d either be partying

constantly or in politics. Only in the latter case would you be tempted to distribute 1000
model airplane kits, but you wouldn’t pay for them.
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that Ts, P ∗Tis, and Tip are all much much less than Tp/P (with no particularly
strong additional constraints on the way tasks are started or finish) so that
R(P )/R(1) ≈ P as required. This is the way a compute cluster of nearly any

sort can be used to get fabulous amounts of work done in parallel. Later we’ll
talk about the SETI project and how to turn the entire internet into a cluster
supercomputer.

This embarrassingly parallel example also gives us a hint of how to improve

our speedup for parallel operation, all things being equal. Suppose we can
distribute one airplane kit per minute and need to build ten airplanes. Suppose
it also takes only one minute to build an airplane one at a time (perhaps they
are the cheap balsa ones your dentist gives to your kids as a “reward” for not
biting her fingers). Hmmm, pretty lousy gain27. Now, think about the speedup
if it takes two minutes to build an airplane28. Better, but not spectacular. What
about a hundred minutes29? Aha! In a lot of cases we can go from pretty shabby
parallel speedup scaling to spectacular astounding parallel speedup scaling by
just increasing the amount of parallel work done while, of course, keeping a lid
on the additional serial fraction associated with doing the additional parallel
work.

As a parenthetical aside (in a work that a cruel person might consider a
huge conglomeration of parenthetical asides [some including nested parenthet-
ical comments of their own] arranged non-parenthetically), one could also be
tempted to reorganize the task completely from its serial arrangement by setting
up an assembly line where each friend just adds one part to a model airplane and
hands it to the next person in line. As Henry Ford discovered, such an arrange-
ment requires considerably greater effort (and capital) to set up, but actually
can allow the model airplanes to be completed even faster than in the embar-
rassingly coarse grained parallel implementation of the serial work by actively
reducing the time required to complete the parallelized work.

Naturally, similar arrangements can occur in parallel programming, espe-
cially when considering the additional costs of e.g. flushing and reloading a
cache or performing a context switch (which can make it more expensive to do
a series of different things in parallel than to do one thing many times). We
might even discuss a few later. This is one of several circumstances where Am-
dahl’s Law might be wrong, or at least (as previously noted) irrelevant, as there
is no useful analog of an assembly line in a non-parallel work situation.

27I’m assuming that you are getting out a used envelope, or buying a new one if you have
to, and actually working out the relative rates to determine that it actually took 11/10 longer

than it would have taken you to build them working alone, for a speedup – uh, slowdown
– of 10/11. This is known as doing “back of the envelope calculations” and unfortunately
you’re going to be forced to do this if you hang out with physicists, especially theorists. No
self-respecting theorist ever goes anywhere without a pocket full of envelopes. Used is best,
but there are few pleasures to compare with filling a crisp new envelope (or the back of your
check or the tablecloth itself, in a pinch) with mind-boggling equations and then leaving them
on the table for the waitperson to ogle after a four-beer physics lunch. But I digress.

28Just in case your envelopes (and brain) are all at home, we get ten airplanes in twelve
minutes instead of 20, for a speedup of 5/3.

29Sigh. Can’t you do the math yet? Ten airplanes in 110 minutes instead of 1,000 minutes,
or very nearly a speedup of 10 for 10 “processors”.
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Anyway, I’ve now completed most of the formal algebraic analysis that I’m
going to do. That’s the good news. The bad news is that I didn’t even try to do
a complete or detailed job of the formal analysis – I’ve only taught you enough30

that you should be able to figure out how to do what you need to do for your
own particular task of beowulf design. If your task is complicated enough to be
beyond the power of this simple analysis to elucidate (and isn’t similar to one
of the ones I consider in detail later) then I guess you’ll have some work to do,
including obtaining and learning from more advanced resources.

There is still one important step to complete before leaving scaling laws com-
pletely. Many of you probably looked at equations like (4.9) with the patient,
somewhat quizzical expression that I might have if suddenly confronted with
a pair of Tibetan monks asking directions to the nearest mall (in Tibetan, of
course). I’m so glad you managed to hold on (out of sheer politeness, I’m sure).
In the next section we’ll actually show the pictures.

4.3 Visualizing the Performance Scaling

If you’re the sort of person who is thinking that all the algebraic analysis was
just great to read about, but so confusing, fear not. There is indeed quite a lot
to understand in all of those equations above. For example, examining our basic
parallel rate equation (4.9), we see that if Tsp 6= 0 it will ALWAYS prevent us
from profitably reaching P → ∞ for a fixed amount of work.

What, you say? You can’t see that even if Tp/P goes to zero, the P ∗ Tsp

diverges, and for some value of P (which we could easily find from calculus, if
we hadn’t taken a sacred oath not to put any calculus in this discussion) the
overall rate begins to degrade?

Well, then. Let’s Look at it. A figure is often worth a thousand equations.
A figure can launch a thousand equations. A figure in time saves nine equations.
Grown fat on a diet of equations, gotta watch my figure. We’ll therefore examine
below a whole lot of figures generated from equation (4.9) for various values of
Ts, Tp, and so forth.

Let’s begin to get a feel for real-world speedup by plotting (4.9) for various
relative values of the times. I say relative because everything is effectively
scaled to fractions when one divides by Ts + Tp as shown above. As we’ll see,
the critical gain parameter for parallel work is Tp. When Tp is large (compared
to everything else), life could be good. When Tp is not so large, in many cases
we needn’t bother building a beowulf at all as it just won’t be worth it.

In all the figures below, Ts = 10 (which sets our basic scale, if you like)
and Tp = 10, 100, 1000, 10000, 100000. In the first three figures we just vary
Tis = 0, 1, 10 for Tip = 1 (fixed). Note that Tip is rather boring as it just adds
to Ts, but it can be important in marginal cases.

Tis = 0 (the first figure) is the kind of scaling one sees when communication
times are negligible compared to computation. This set of curves (with increas-

30Optimistically enough assuming that you’ve learned all that I’ve presented so far, of
course...
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ing Tp ascending on the figure) is roughly what one expects from Amdahl’s Law,
which was derived with no consideration of IPC overhead. Note that the dashed
line in all figures is perfectly linear speedup. More processors, more speed. Note
also that we never get this over the entire range of P , but we can often come
close for small P .

Tis = 1 is a fairly typical curve for a “real” beowulf. In it one can see the
competing effects of cranking up the parallel fraction (Tp relative to Ts) and can
also see how even a relatively small serial communications overhead causes the
gain curves to peak well short of the saturation predicted by Amdahl’s Law in
the first figure. Adding processors past this point costs one speedup. In many
cases this can occur for quite small P . For many problems there is no point in
trying to get hundreds of processors, as one will never be able to use them.

Tis = 10 (the third figure) is more of the same. Even with Tp/Ts = 10000,
the relatively large Tis causes the gain to peak well before 128 processors.

Finally, the last figure is Tis = 1, but this time with a quadratic dependence
P 2 ∗ Tis. This might result if the communications required between processors
is long range and constrained in some way, as our “all nodes communicate every
step” example above showed. There are other ways to get nonlinear dependences
of the additional serial time on P , and they can have a profound effect on the
per-processor scaling of the speedup.

What to get from these figures? Relatively big Tp is goooood. Tis is baaaad.
High powers of P multiplying things like Tis or Tc are baaaaad. “Real world”
speedup curves typically have a peak and there is no point in designing and
purchasing a beowulf with a hundred nodes if your calculation reaches that
scaling peak at ten nodes (and actually runs much, much slower on a hundred).
Simple stuff, really.

With these figures under your belt, you are now ready to start estimating
performance given various design decisions. To summarize what we’ve learned,
to get benefit from any beowulf or cluster design we require a priori that Tp �
Ts. If this isn’t true we are probably wasting our time. If Tp is much bigger
than Ts (as often can be arranged in a real calculation) we are in luck, but not
out of the woods. Next we have to consider Tis and/or Tc and the power law(s)
satisfied by the additional P -dependent serial overhead for our algorithm, as a
function of problem size. If there are problem sizes where these communications
times are small compared to Tp/P , we can likely get good success from a beowulf
or cluster design in these ranges of P .

The point to emphasize is that these parameters are at least partially under
your control. In many cases you can change the ratio of Tp to Ts by making the
problem bigger. You can change Tis by using a faster communications medium.
You can change the power scaling of P in the communications time by changing
the topology, using a switch, or sometimes just by rewriting the code to use a
“smarter” algorithm. These are some the parameters we’re going to juggle in
beowulf design.

There are, however, additional parameters that we have to learn about.
These parameters may or may not have nice, simple scaling laws associated
with them. Many of them are extremely nonlinear or even discrete in their
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effect on your code. Truthfully, a lot of them affect even serial code in much
the same way that they affect parallel code, but a parallel environment has the
potential to amplify their effect and degrade performance far faster than one
expects from the scaling curves above. These are the parameters associated
with bottlenecks and barriers.



Chapter 5

Bottlenecks

Or...why Can’t Life Be Simple?
Your computer has lots and lots of “moving” parts1. They are interlocked in

strange and complicated ways. The work that they do for the central processing
unit (CPU) proceeds at different rates. Sometimes the CPU has to wait on these
processing subsystems. Sometimes the processing subsystems have to wait on
the CPU.

You can see that I’m already using the CPU as the lowest common denom-
inator of times and speeds in a system. This is generally the correct thing to
do. The CPU clock is generally the fastest one available in the system, and
although there is considerable variation in CPU architectures and just how fast
they accomplish things, I’m going to assume that on a good day a “typical”
CPU executes a single instruction in a single “clock” (cycle) (which is the in-
verse of the clock frequency). This won’t always be true (some instructions may
require several clocks, others may complete in parallel in a single clock.

Given CPU speeds that these days range from 300 MHz to 1 GHz, I’m going
to assume that typical times required to execute “an instruction” range from 1
to 3 nanoseconds. Linux calls this the “bogus” rate of instruction execution and
measures it as a given number of “bogomips” (millions of bogus instructions per
second) early in the boot process. It is as good a measure of average processor
speed as any other for the purposes of this chapter2.

Most of the time the CPU (being the fastest gun in the west, so to speak)
is the thing that ends up waiting. Whenever we have one part of the computer
waiting on another to complete something before it can proceed, we have trouble.
If the computer (CPU) is really only trying to do just one thing, it ends up
twiddling its metaphorical thumbs until it can go forth and calculate again. If
it has other things it can do it can try to improve the shining hour by doing them
while it waits. Making all this work efficiently is what multitasking, multiuser
operating systems are all about.

1Many of which don’t actually move, for all that they do a lot of work...
2That is to say, it sucks. If you want to know how fast a processor will run your code, run

your code on it.
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When we make an entire network of systems into a computer, this problem
is amplified beyond belief. If any one CPU is slowed down for any reason (such
as waiting on some resource) it can slow down the whole calculation distributed
on all the nodes. Resources that are likely to be constrained and hence form
rate-limiting features of a given calculation are generically called “bottlenecks”.
It’s like having a four lane road that suddenly narrows down to just one lane –
the “neck” – traffic often goes even slower than it might have if the road had
been one lane all along3.

Let’s learn about some of the classic bottlenecks associated with computer
calculations – the CPU-memory bus, the CPU’s cache (size and speed), the disk
and the network itself. We’ll also think a bit about how a given parallelized
program might have to be written to deal with bottlenecks and (in the next
chapter) the related desynchronizing of lots of program elements that can occur
if a job is asymmetrically distributed (where one node is faster than another
node for whatever reason). The key thing to understand here is that it makes
no sense to invest in a figurative ferrari to drive in bottlenecked traffic when
kid in a pair of rusty rollerblades might well be able to make faster progress,
especially when the money you spent on the ferrari could have been used to
widen the road.

To understand bottlenecks on a computer system, we have to first learn the
meaning of two words: latency and bandwidth. Latency is the delay between
the instant a CPU requests a piece of information and the time the information
starts to become available. The word “starts” is key here, as the information
requested could be quite lengthy and take a long time to deliver. Bandwidth
is the rate at which the information is actually delivered once the delivery has
begun. Latency is measured in units of time (typically seconds to nanosec-
onds) while bandwidth is measured in units of memory size/time (typically
megabytes/second).

To give you a really meaningful metaphor, latency is the time it takes from
right now to go to the refrigerator and get a beer. Bandwidth is the rate at
which (beer in hand) you drink it, as in one beer/hour, ten beers/hour, or so
forth. Go on, experiment. Measure the latency and bandwidth of the beer
transfer process. Think a bit about the tradeoffs between getting one beer at a
time and only chugging it when getting back to your desk (paying the latency
of a trip to the fridge over and over) versus getting a whole sixpack in a single
trip.

Exciting concept isn’t it? Hopefully by now the hangover induced by your
experimentation last night has subsided and we can focus once again on our main
topic which is beowulfery and not beer (however much they have in common45).

3This often leads to a certain amount of cursing, some crawl-by shootings, and some good
natured road rage. I find that the same is true when one discovers a critical bottleneck in
your parallel cluster, especially after writing a many-shekel grant proposal to buy it and build
it.

4If you look carefully, you’ll note the word beer is in fact buried in beowulfery. Beowulfery!!
is an anagram for ‘Yow! Beerful!’. Wow. Almost spooky how that turned out.

5Or, as Josip Loncaric pointed out, Beowulf is also Foul Web. Don’t want to think too
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To start with, let’s (as is our habit) take a really obvious example so that you
see why we’re doing this. Suppose that you have a cluster of diskless machines
available and that each diskless machine has 32 MB of main “core”6 memory.
On this cluster, you wish to run a job that (when running) occupies 64 MB of
core (or more) but that partitions nicely into parallel segments that are (say)
20 MB each when running on four nodes.

Running on a single system, the job has to swap constantly, and in this case
the only way to swap is over the network to a remote disk on the diskless server.
Swapping is very, very bad for performance – disks are many powers of ten
slower than direct memory access – and swapping over a network compounds
the injury. If one has to constantly go to the remote disk to load/unload the
contents of memory it can very, very significantly increase the time required to
run the program (as I’ll discuss below in considerable detail). What is more, it
can increase the time required to run the serial fraction of your code as much
as it increases the time required to run the parallelizable fraction, because the
parallelizable fraction has to swap in and out where it is interleaved with the
serial fraction.

On the other hand, when running on a four node cluster one has to pay the
IPC penalty (which we’ll assume is fairly small and scales linearly with P ) but

the node jobs no longer swap – they fit into memory with room to spare for the
operating system and libraries and buffers and caches and so forth. It is entirely
possible that Ts is reduced so much by this that Amdahl’s Law is violated by
the speedup7.

This shouldn’t be too surprising. Our derivation of Amdahl’s law assumed
a certain smoothness of the execution times over the serial/parallel division of
a problem; in particular, we assumed that Ts and Tp themselves don’t fun-
damentally change except by the division of the parallel work. This not at
all unreasonable example shows that this assumption may be false in the real
world because the system in question has finite resources or resources that are
accessible on a variety of timescales.

It also illustrates an important class of jobs for which beowulfs are ideal.
One does not always consider building a beowulf to achieve a “speedup” in the
ordinary sense of the word. One can also build one to enable a job to be done
at all. More realistically (since in the previous example an obvious solution is
to invest $30 in another 32 MB of memory) if one has a job that runs in ∼ 5

hard about that one...
6You can always tell an Old Guy in computing because we still use quaint terms like “core”

to describe something that hasn’t been an actual core since before most of the folks reading
this were born. I’ve actually seen and held in my hands antique memory cores, which looked
like a funny 3-dimensional grid of wires and beads in a tube. Chip-based memory is boring by
comparison. You can see a picture of a memory core (complete with a nifty “magnifier” that
scans the beads) at http://www.physics.gla.ac.uk/∼fdoherty/IDRG/lense.html at the time of
this writing.

7If one is inclined to argue, imagine the speedup if the four nodes in question don’t have
remote swap or any swap at all. In that case the job takes an infinite amount of time on a
single node as it just won’t run, and will take a finite amount of time on four nodes. How’s
an infinite speedup for a violation, eh?
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GB of memory it may be far cheaper to purchase ten 512 MB systems than one
5 GB system, presuming that one can find a system at any price that holds 5
GB of main memory8

Speedups that violate the simple notions that went into Amdahl’s Law or
the slightly more realistic speedup equation (4.9) are called superlinear speedups,
and a vast literature has developed on the subject. Basically, a superlinear
speedup is what we call it when for any reason parallelizing a program results
in a speedup that scales faster than P for any part of its range. In nearly all
cases, these will occur because of the wide range of timescales available within
“a system” for accessing data or code.

Bottlenecks (in this case the bottleneck associated with disk-based virtual
memory) can clearly wreak havoc on our beautifully derived speedup expres-
sions, for good or for ill. Let’s take a quick look at the primary bottlenecks
that can significantly impact our parallel performance. I’ll try to include some
simple code fragments that either illustrate the points or permit you to estimate
their impact on your code.

We’ll begin with a simple table of the bottlenecks and the sorts of (both
practical and theoretical) limits associated with them:

Bottleneck Description Latency Bandwidth
L1 Cache CPU to L1 Cache 1-5 ns -

read/write (1 clock cycle)
L2 Cache L1 to L2 Cache 4-10 ns 400-1000 MB/sec

read/write
Memory L2 Cache to memory 40-80 ns 100-400 MB/sec

read/write
Disk (local) CPU to disk 5-15 ms 1-80 MB/sec

read/write
Disk (NFS) CPU to NFS disk 5-20 ms 0.5-70 MB/sec

read/write
Network CPU to remote CPU 5-50 µs 0.5-100 MB/sec

write

The first thing to note in this table is the times therein differ by seven or
more orders of magnitude for different devices. Compare 1 clock tick (as little
as 1 nanosecond for a 1 GHz CPU) latency accessing a particular address in
the L1 cache to 10 or more millisecond latency accessing a particular address
on a hard disk. Compare bandwidths of a megabyte per second for streaming
data transfer over a slow network (often degraded to half that or even less) to
rates on the order of a gigabyte per second from the L1 cache. Even this fails to
encompass the full range – we don’t even consider floppy drives, serial networks,
or tape devices on the slow end or the internal rates of register activity within

8As I discuss later below, running the job on a 512 MB system with 5 GB of virtual memory
in the form of swap could conceivably transform a job that would take a mere day or two on
a system with 5 GB of memory into one that would probably finish just in time for the next
millenial celebration. No kidding. Six orders of magnitude will do that to you.
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the CPU itself on the high end.
The second thing to note is the the entire reason for having a full hierarchy

of “memory” access rates is to hide the longest times and slowest access rates
from you. Your average data access rate and latency is determined by how
often the data you need is available in each different kind of memory (where we
will consider disk to be a kind of memory, and will often think about network
reads or writes in terms of memory as well). Time for an equation. Suppose
pi is the probability that your program finds the next piece of data or code
it is looking for in the ith kind of “memory” in the table above. Then the
average latency (the average time the system has to wait before the data or
code becomes available) is:

< L >=
∑

i

piLi. (5.1)

For example, if pL1 = 0.05, pL2 = 0.9, and pM = 0.05 for a problem that fits
into main memory, the average latency might be something like:

< L >= 0.05 ∗ 1 + 0.9 ∗ 8 + 0.05 ∗ 50 = 9.75 (5.2)

in nanoseconds. Things get a little more complicated trying to determine
the overall data access rate (I’d rather not get into a full discussion of EDO,
SDRAM, Rambus, and so forth at this moment and instead will just give you
a web reference9. However, the bottom line is that as long as the hierarchy of
your hardware accomplishes this efficiently (maintaining an average latency and
bandwidth reasonably close to that of the L1 and/or L2 cache) for your code

there is no reason to invest in a more expensive hierarchy.
The following is my own, strictly editorial opinion10. To put it bluntly,

the advantages of a large L2 cache are often overblown by CPU manufacturers
interested in selling you larger, more expensive (and profitable!) CPUs. It is
amusing to compare the actual execution times for given pieces of code on similar
clock processors from the Intel Celeron/PII/Xeon/PIII family. The Celeron,
Xeon and PIII have caches that run at the full speed of the CPU, so that on
an (e.g.) 500 MHz CPU a clock tick is 2 nanoseconds. The PII has a cache

9See http://pclt.cis.yale.edu/pclt/PCHW/CPUMEM.HTM
10One which it is always nice to see is shared by others. For example, a quote from the

aforementioned web page on memory hierarchy:

All other things equal, more cache is better than less. Clearly no desktop user
is going to blow $3800 to get a Xeon processor that, for ordinary applications,
will be almost indistinguishable from a $150 Celeron. Just because a Pentium
III system is within reach, is it really worth the money?

Vendors have an incentive to sell more expensive units. Some customers will opt
for the more expensive machine because they think they’re worth it. However,
most casual users will get along quite nicely with a Celeron. The Pentium III
is engineered best for a workstation or server with two CPUs. If it ever makes
sense, the Xeon is designed for corporate servers with 4 or 8 processors.

This is part of the Yale “PC Lube and Tune” website, which is actually rather nice and well
worth bookmarking as an extended resource: http://pclt.cis.yale.edu/pclt/default.htm
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that runs at half the speed of the CPU clock. The Celeron L2 cache is 128 KB
in size; the PII and PIII caches are 512 KB in size (four times larger) and the
Xeon cache comes in several sizes, but can be as much as 2 MB in size if you’re
willing to pay an absurd amount of money for it.

For “most code” (where once again I risk flames with such a fuzzy term)
there is little benefit to be seen in having a CPU with the larger cache sizes.
Given a factor of ten or so cost differential between the small-cache Celeron and
a very large cache Xeon at equivalent clock, one can afford to buy three complete

Celeron systems for what it costs to buy one 2MB cache Xeon processor and
only rarely does one see as much as a 20% speed advantage associated with
the larger cache. However, there are exceptions. Code/data sets that fit within
a cache clearly will execute far faster than code/data that has to go to main
memory (see table above).

The reason that caches tend to work so well is that in a lot of cases a
relatively few instructions are executed sequentially in loops, so that loading a
whole block into cache from memory just one time suffices to allow the program
to run out of cache for extended periods. If one is very lucky, one’s core code
can live in the L1 cache and runs at “full speed” all the time. Similarly, a lot of
time the data one works on tends to be “localized” in the memory space of the
program so that one load works for an extended period. If you like this makes
pL1 + pL2 � pM so that, on average, the CPU finds what it needs already in
the cache with occasional long delays when it doesn’t and has to reload. As
we’ve seen, this tends to yield and average latency and access speed not too far
from the bare speed of the L2 cache which keeps your CPU trucking right along
doing useful things instead of waiting for data.

However, if your program does things like add up randomly selected bytes
of data from a one megabyte dataspace, it may not find the next byte that it
needs in cache. With a 128 KB L2 cache, the probability may be no greater
than 1/10 that it does, so 90% of the time it will take some 60 nanoseconds to
get the next byte to add, and 10% of the time it will only take 10 nanoseconds
(or less) for an average rate of one byte in 55 nanoseconds (plus a tick or so
for the add). With a 512 KB L2 cache, it might find the byte it needs (after
the program has been running a while) 1/2 the time, and its average rate of
access goes up to one byte in 35 nanoseconds. With a 1 GB L2 cache, the data
lives entirely without the cache and the program can get the next byte in 10
nanoseconds, nearly six times faster than with a 128 KB cache.

Some tasks are “like” this and have a very nonlocal pattern of memory access.
These tasks benefit from a large cache. As you can see from the numbers above,
though, if one finds 90% or more of what one needs in L1 or L2 cache already,
there is little marginal return paying quite a lot of money for having a bigger
one.

Note that this kind of problem can easily exhibit a nice superlinear speedup
on a beowulf. If one breaks one’s 1 MB into ten pieces 100 KB each in size,
they will run in cache on Celeron nodes for a speed advantage (per node) of
nearly six in addition to the factor of 10 for parallelizing the sums. If the blocks
can be independently sampled and summed for a long time (to minimize the
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relative IPC cost of transferring the blocks and collecting the partial sums at
the end) one may see a speedup far greater than one might expect from just
using 10 nodes to do something you were before doing on one and ignoring the
cache interaction. A silly example, in that I can think of no useful purpose to
summing random bytes from a given memory space, but there are likely useful
things (perhaps in a simulation of some sort) with a similar access pattern.

Now, with my editorial comment completed, I do not mean at all to suggest
that the speeds and latencies of the memory subsystems are unimportant to the
beowulf designer – quite the contrary. There are many jobs that people run
on computers (beowulf or not) that are “memory bound” (which just means
that their speed is primarily determined by the speed with which things are
retrieved from memory, not the speed of the CPU per se). Multiplying very
large matrices and other sequential operations involving large blocks of memory
are perfect examples11. In many of these operations the system is “always”
getting new blocks of data from memory and putting them into cache (or vice
versa) so that the memory subsystem is more or less continuously busy.

In that case an important new bottleneck surfaces that is a frequent topic
of discussion on the beowulf list. It is well known that the cheapest way to
get CPU is in a dual packaging. Dual CPU motherboards tend to be only a
tiny bit cheaper than single CPU motherboards, and a dual can share all other
resources (case, memory, disk, network) so you only have to buy one set for two
CPUs. In one direction, the marginal cost of a dual over a single is the cost of
a second CPU plus perhaps $50-100 (in the case of Intel processors – YMMV).
In the other direction, the marginal cost of a second single CPU node compared
to a dual node is the cost of a case, memory, disk and network (less $50-100) or
perhaps $100-300, depending on how much memory and disk you get.

If your calculation is “CPU bound” then a dual is optimal and your beowulf
design should likely be a pile of duals. In many cases EPC’s will be CPU bound
– more CPUs means more work done. If it is memory bound, however, it is a
true fact on Intel systems that duals more than saturate the memory subsystem.
If two CPUs are trying to get things from memory at the same time as fast as
they can, one CPU has to wait at least a fraction of its time. This can impact
memory bound performance significantly so that instead of getting 200% the
performance of a single CPU system, one gets only 140-160%. In this case, one
is usually better off getting two singles (which can yield the full 200%).

If your calculation is network bound (a possibility discussed in detail in
the next chapter) life becomes far more complicated. In that case, there are
lots of possibilities to consider including communication pattern, putting two
NIC’s in one case, being effectively memory bound (one generally talks to the

11It is worth mentioning that linear operations like this can be very significantly sped up
(by a factor of 2 to 3 or more) by precisely organizing them to match the actual sizes of the
caching subsystems. ATLAS (Automatically Tuned Linear Algebra System) is a project that
has written some very clever code-building code that creates linear algebra libraries (BLAS
and LAPACK) with loop and block sizes precisely tuned to cache size to yield empirically the
best possible execution times. Very, very cool. See http://www.netlib.org/atlas/index.html
to get the package.
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NICs through the memory subsystem) and the fact that a dual can in some
circumstances use a network more efficiently than a single because receiving

a network transmission turns out to proceed much, much more slowly if the
receiver’s CPU is busy running code. I therefore hesitate to give a general rule
for singles versus duals in situations where your code is network bound – you’re
better off prototyping your code and recycling the losing hardware on desktops
or as servers.

All of the arguments and discussion concerning the L1-L2-main memory
bottlenecks hold true when extended to jobs that swap, only everything becomes
much, much worse. When a job swaps, an even slower “memory” (the hard disk)
is used to store part of the (virtual) memory image of the running job. Under
the assumption that the code and data are reasonably local, pieces of them are
loaded into real memory on demand (whenever a virtual address is requested
that is on the disk instead of in real memory) usually in fairly big chunks (pages).
In fact, the system does this even when it doesn’t “have” to and typically keeps
only what it is actually working with in memory to conserve memory for all
sorts of buffering and caching optimizations that the operating system handles
for you behind the scenes.

The reason for big chunks is that if you have to pay that hideous 5-10
millisecond latency (often twice!) to get any chunk at all, you have to get a
“big” one to keep the average transfer rate from being absurdly low. You’re
also betting (literally) that your next data or code requirement is more likely
to come from the big block you just read in than not.

You pay the penalty twice when you have to store some of the pages in
memory to disk to liberate the space for new pages coming in from disk. This
generally happens for data, hence the term “swap”, where two data pages are
exchanged. Code, on the other hand, tends to be read in single pages from
the single fixed disk image of the binary and its associated libraries, where the
system works hard to cache frequently accessed pages to avoid having to actually
use the disk. The two kinds of virtual memory operation (page and swap) are
accounted separately in /proc/stat – lots of paging is normal, lots of swapping
(or even any swapping at all) is dark and evil. Even reading in large chunks,
the many orders of magnitude difference in writing to and reading from the disk
instead of memory is very, very costly to a program’s speed.

As (5.1) shows, if one is lucky and the code and data references are indeed
mostly clustered, a job can swap or page and still complete in a reasonable
amount of time. The calculation looks very similar to the example above except
now one has an additional term where one has to multiply the probability of
having to go to swap times the rate (including the combined effects of latency,
transfer bandwidth, and the size of the block requested) to the other terms. As
long as the vast bulk (as in more than 99%) of requests are satisfied from CPU
cache or main memory, an occasional swap or page isn’t too painful.

Life starts to really suck, however, when this is not true. If we extend the
random access example to swap-based virtual memory, we can arrange things to
deliberately defeat the best efforts of the paging and swap algorithms and force
the system to disk again and again. For example, on a system with only N bytes
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of RAM, one can create a job that occupies a 10∗N virtual memory space, 9∗N
of which necessarily reside on disk. Sequentially adding randomly selected bytes
of data from this long vector will force the system to memory (instead of cache)
on almost every call and on to disk 90% of the time, paying approximately
(0.9*10 = 9) milliseconds per add. Adding a mere 109 numbers would require
some 106 seconds, or almost two weeks. Compare that to adding 109 numbers
selected from a vector that fits in L1 (on the order of a few seconds) or L2
(a bit less than a minute) or memory (a couple of minutes). You can see why
understanding the bottlenecks associated with the different speeds of the various
memory subsystems is so important when engineering a standalone workstation,
let alone a beowulf cluster.

Again you can see how a 10 node beowulf design that permits the task to
execute out of main memory could yield a millionfold improvement in time to
completion, which is a rather profound nonlinear speedup. This also justifies
the earlier observation that a job that might run in some reasonable fraction
of a day on such a beowulf could be stretched to 365000 days and end in early
3000 A.D. on a single node with swap. Disk is very, very slow compared to any
sort of “real” memory subsystem and both tasks and the beowulfs they run on
should always be designed and tuned to avoid requiring swap at all costs.

However silly this example appears at first glance, there are a number of
tasks with a similar lack of locality that do, in fact, occupy very large virtual
memory spaces. Sorting very long lists, database operations, certain kinds of
simulations, all might perform operations on very widely separated or even
randomly selected elements in a list. Here is another place where algorithm
becomes almost as important as architecture – some algorithms for a sort, for
example, might be far more local than others and although they may scale worse
in terms of number of operations, by avoiding a killer bottleneck (tending to
run in cache, for example) they may complete in far less time.

It is interesting to note in the context of beowulfery that (following the
table above) it is some two to three orders of magnitude faster to transfer data
from the memory of a remote system over the network than it is to transfer it
from a disk (whether local or remote). Even if one’s job isn’t capable of being
partitioned among nodes, if it requires four GB of virtual memory (and all you
have is 512 MB nodes) one can obtain nearly a thousandfold speedup compared
to running out of swap by putting swap spaces on remote ramdisks on the nodes
that are then served to the single-threaded task execution unit over the network.
In principle this can be done with current linux kernels (make a big ramdisk
on a node, build a swap space on it that is provided via NFS to the execution
node) but I haven’t tried it. It is likely that (if it works at all) it isn’t really
very efficient, however much it improves on a disk based swap.

This is an area of current research by real computer scientists. The Trapeze
project being conducted (in some cases by friends of mine) at Duke12 is one such
effort (based, alas, on FreeBSD) that uses e.g. Myrinet as the network layer.
With its ∼ 5 microsecond latency and gigabit per second bandwidth, Myrinet is

12See http://www.cs.duke.edu/ari/trapeze
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fast enough to form the basis to an intermediate layer in the memory hierarchy
directly integrated with the kernel, rather than operating through the usual
swap or paging mechanism. Again, the point is that beowulfish architectures can
provide tremendous nonlinear speedups and enable new work to be accomplished
at far lower cost than (for example) buying a system equipped with four or five
gigabytes of main memory.

The network is such an important bottleneck in a traditional “real” beowulf
calculation that it deserves a section all its own. In the next chapter we’ll
examine the network and IPC’s in a beowulfish layout. We’ll also show how
IPC’s and the not infrequent requirement that your code proceed by parallel
steps synchronously can combine to push your optimal design towards, or away,
from a “true beowulf” configuration as opposed to a generic cluster.

There are several bottlenecks that I haven’t discussed in this section that
may or may not be important to your code. For example, I’ve only barely
mentioned context switches13 without telling you what they are or why they
are “bad”. They are what happens when your code bounces around in certain
ways and forces the cache to be reloaded with new code, and they can occur
when you call lots of widely separated subroutines or when you access the I/O
subsystems a lot, among other places. So try to avoid doing this sort of thing
inside your main loops, all right? I also haven’t talked much about interrupts
per se, partly because interrupts and context switches live in the Deep Kernel
and are Not Meant for Mere Mortals to Know. Or something like that.

Actually, interrupts are pretty important to beowulfery, especially those as-
sociated with the network, again because there are all sorts of nasty latencies
and bandwidths and contention issues to deal with in exotic circumstances.
However, most of this will be largely beyond one’s control unless one happens
to be a kernel hacking kind of person with an I.Q. of around 17014. So a really
proper treatment of this will have to wait until I write a book on the kernel,
which, given my truly astounding lack of detailed knowledge of how the kernel
works, could be forever15.

13Right here, in fact.
14Or happens to be a somewhat stupider pocket protector clad geek type who never sleeps

or bathes because one spends one’s life studying the kernel.
15Proving, for the logicians amongst us, that I either am not a kernel-hacking kind of person,

my I.Q. is less than 170, or that I at least occasionally bathe and sleep.



Chapter 6

IPC’s, Granularity and
Barriers

OK, by now you should be getting the hang of things. A beowulf is a parallel
supercomputer built out of COTS nodes interconnected by a COTS network of
some kind. One can build a beowulf to speed up a piece of parallelized code
(in the classic Amdahlian sense) so it finishes faster. One can build a beowulf
to be able to do a task at all by assembling more resources than one can either
afford any other way or than are currently available in a system at any price.
One can build a beowulf to speed up a code in an exotic way (by providing a
faster extended virtual memory space, for example).

In the previous chapter we discussed all sorts of ways the basic bottlenecks
between the CPU and memory subsystems (within a node, by assumption)
can affect program speed, trying to provide a semi-quantitative understanding
so that you can at least do the back of the envelope calculations required to
compare the cost-benefit of various alternative ways of accomplishing a task.
In this chapter we’ll focus on the sine qua non bottleneck of beowulfery, the
network.

There is so much to learn about networking and how it relates to serious
beowulfery that it is hard to know just how much to put into an introductory
book like this. To invert the point, there is such a wide range of ignorance about
networking out there that I could easily be speaking to someone who doesn’t
know Appletalk from Ethernet, has never heard of the ISO or OSI, for whom
TCP and IP are a mystery, and who thinks that a router is a device for cutting
interesting curves in a piece of wood.

If this is you: Sorry, chum, you won’t learn about these things here, or at
least you won’t learn much (certainly not enough to assemble a functional linux
network). What can I say – there are whole books that focus on just setting
up and running a network, and I cannot compress all that into a chapter and
have time to say anything at all about networking in the fairly strict context of
beowulfery.

65



66 CHAPTER 7. IPC’S, GRANULARITY AND BARRIERS

So, even though a network is key to a beowulf, I’m going to assume that in
fact you do know what the following are:

• NIC (Network Interface Card), typically a PCI (regular, fast, or gigabit)
ethernet adaptor or PCI Myrinet adaptor, although there are now some
exotic alternatives with more on the horizon. This little pup plugs into the
PCI bus of your node and is connected via RJ45 cables to an appropriate

• Hub. This is something that distributes a signal in the transmit wires of
one connection to the receive wires of all the other connections. There
are all sorts of technical things associated with hubs (like the number of
hubs you can put in between hosts). In general, hubs are “bad” in beowulf
design unless one’s needs are modest and likely to stay that way. If one
can afford it, one would usually do better with a

• Switch. This is something that establishes a virtual pairwise connection
between hosts plugged into the switch. Where the hub allows only one

host at a time to talk in one direction, a switch allows all the hosts to talk
at the same time in both directions. In principle – be sure to check the
“bisection bandwidth” of your switch to ensure that it can indeed handle
full-duplex on all lines at once as a cheap switch might not.

• Ethernet. The most common (and cheapest) networking hardware pro-
tocol. Ethernet comes with an amazing and complex set of rules and
standards, such as how long a cable can be used to connect a host to a
hub or switch, how many hubs can exist between hosts, what an adaptor
has to do in the event of a collision (what a collision is in the first place),
in addition to certain baseline latencies and bandwidths and packet sizes.
Can’t know too much about ethernet, no sirree-bob!

• Myrinet. The most common and probably premier gigabit network. It’s
about ten times faster than 100BT ethernet, and costs about twenty times
as much per node (or even a bit more).

• IP. “Internet Protocol”. Yes, it is the fundamental protocol upon which
the internet is founded. Associated with IP is the “internet address” (or
IP address) of a host (adaptor), a packet structure (headers and so forth),
and above all a routing and filtering mechanism.

• TCP. “Transmission Control Protocol”. This lives “on top of” IP and
regulates things like the reliable delivery of packets across an uncertain
network. Most common services (like mail, ftp, telnet, http and so forth)
are defined in terms of standard port addresses within TCP. TCP is a bit
smarter and more reliable than “raw” IP, and hence is a tiny bit slower.

• Sockets. A “socket” is an abstraction for a network connection. One
opens up a socket on a host and a remote service connects to that socket.
Information flows between the sockets. Sockets can be read or written to
like files (of course, in Unix and hence linux, everything is a file, right?).
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• UDP. “Unix Datagram Protocol”. This is a kind of socket and hence
network connection. It is the “raw IP” connection I referred to earlier. A
TCP socket is more reliable but has certain limitations and costs. UDP is
commonly used to provide local services within a local area network LAN),
TCP across a wide area network or WAN. Except that isn’t necessarily
true anymore, as reliability is almost always more important than raw
speed. NFS is probably the most famous UDP service.

• Router. Something that routes packets, usually IP packets (actually a
router can often route lots of kinds of packets but we don’t care about any
other kinds).

• Gateway. A router that typically lives between an “inner” network (LAN)
and an “outer” network (ultimately the rest of the Internet). It lets in
the good packets and lets out the bad packets. A true beowulf typically
has a gateway node that is also usually a “head” node from which it is
controlled and may also be a server node if the internal nodes require (e.g.)
NFS services. The gateway node can keep spurious external traffic off the
private internal network of the nodes.

As you can see, I am omitting all sorts of useful and important things. You
won’t learn about netmasks, broadcasts, how to configure a NIC, or any of that
from me. However, I will direct you to the /usr/doc/HOWTO directory (in most
linux distributions) that has explicit step by step instructions for setting up all
sorts of things including the network. Don’t forget about Linux Headquarters
(http://www.linuxhq.com/) either, which has links to all the HOWTOs and
other documentation. There are a bunch of key learning documents in my own
personal website including http://www.phy.duke.edu/∼rgb/security/local.guide,
which is “the” classic 1988 Rutgers white paper by Charles Hedrick describing all
sorts of networking concepts. Finally, there are a whole bunch of useful URL’s
on the Brahma website (http://www.phy.duke.edu/brahma) which might be of
interest to the neophyte.

SO, from here on I’m going to assume that you can design and set up a
simple ethernet-based IP subnet without having your hand held. We’ll still
address some of this sort of thing in the next chapter, but for now we’ll focus
on the technical details (especially things like latency, effect of packet size on
bandwidth, problems, solutions) and not on truly introductory things.

6.1 Shared Networks

6.2 Switched Networks
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Chapter 7

Profiling

• To see if a beowulf makes sense, we therefore must begin by determining
Ts and Tp (for a given amount of work W and total execution time T ).

• For example, word processors are almost entirely serial; S = Ts/T ≈ 1
and are I/O bound as well (we’ll get to this later). It would be stupid to
build a parallel word processor.

• Many statistical simulations, on the other hand, can be run “completely”
in parallel, with a relatively tiny fraction of the code serialized to collect
results. For these S � 1 and it is easy and profitable to run in parallel.

• Compile with (gcc) -pg compiler flag, use gprof to see where program does
the most work, identify parallelizable sub-tasks. Or use BERT (Fortran),
or other similar tools. It Tp (even under ideal circumstances) worth it?

• Note: “Larger” problems can be attacked by a beowulf than on a UP
system, which may make them worthwhile even when the scaling is lousy.
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Parallelizing the
Discovertm Neural Network

An Example

Run gprof on discover building a simple neural network (ten bit “divisible
by seven”). Small training set, not many neurons. We get:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

38.53 20.84 20.84 67549440 0.00 0.00 act_func

34.81 39.67 18.83 67549440 0.00 0.00 dotprod

8.36 44.19 4.52 67549440 0.00 0.00 activity

6.84 47.89 3.70 13305088 0.00 0.00 trial

4.66 50.41 2.52 4052 0.62 1.65 find_grad

3.29 52.19 1.78 47919 0.04 0.95 eval_error

1.72 53.12 0.93 800 1.16 1.19 dsvdcmp

0.89 53.60 0.48 5186560 0.00 0.00 actderiv

0.30 53.76 0.16 800 0.20 2.27 regress

...

trial, act func, activity, and dotprod are all used to evaluate the training set

error of a neural network. Together they comprise more than 80% of the code.
If we can parallelize the evaluation of training set error, we can expect a fivefold
or better speedup for the run I profiled.

Or can we....?
The answer, of course, is NO – this is just an upper bound and one that

depends strongly on problem size at that. Still a useful case to investigate.
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Network (weights)

Alter weights

Training Set

Error

Figure 7.1: Training cycle of feed-forward, backprop network

• Many evaluations of error, but cannot run multiple evaluations of error
in parallel throughout the code – in many places it is serial! Only error
evaluations in the “genetic” part are parallel.

• Training set of example is small, but training sets get much larger. Train-
ing sets are static (fixed once at the beginning).

• Error cumulative!

This suggests as a solution:

• Send training set to nodes (once). Send weights to nodes each time error is
needed. Split up application of network to training set among the nodes,
cumulate resulting error and reassemble into total error.

• “Master-Slave” paradigm. Often good for beowulf, but beware accumula-
tion of NEW serial time associated with bottlenecked IPC’s...
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Bottlenecks
Bottlenecks? What are those? Bottlenecks are by definition rate determining

factors in code execution (serial or parallel). We need to be aware of various
bottlenecks:

• CPU. The CPU itself is often the primary bottleneck. This is usually a
Good Thing for a beowulf application, since CPU is what you get more
of in a parallel system.

• Input/Output (I/O). The disk, the keyboard, video – all MUCH slower
than processing itself (and probably serial, recall word processor).

• Memory. CPU speed has grown faster than memory speed can keep up.
Which leads us to...

• Cache. A cache is a small block of “superfast” memory attached directly
to the CPU. All sorts of potential bottlenecks (and optimizations) here.

• Kernel. Systems calls may be fast or slow or blocked (SMP).

• Network. In a beowulf, the network is the “interprocessor communications
channel” (IPC). This is such an important and complex bottleneck that
we consider it in detail later.

• These bottlenecks all interact, sometimes in surprising ways.
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Training Set

1 2 3 4

Master

Slaves

Error

Network (weights)

Alter weights

Figure 7.2: Training cycle of parallelized feed-forward, backprop network

Tp vs IPC Time Ti

The Second Step
Suppose that after profiling your task (like the discover example) appears

suitable for parallelization. Are you done studying your code? Definitely not.
Look at the very rough schematic of our parallel neural training cycle.
Every solid arrow crudely represents an interprocessor communication cycle

that takes time we represent Ti. In a master-slave paradigm this time adds to
the serial time Ts. In a more symmetric communcations model, part of this
time might itself be parallelized.

Parallelizing code changes the serial and parallel fractions!
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This introduces new P variation into our earlier statement of Amdahl’s Law.
Call Ti,s the serial IPC time per node and call Ti,p the parallel IPC time (which
still adds to the serial time). Then following Amalsi and Gottleib, we can
crudely represent the modified “speed” as:

Work
(Ts+Ti,p)+P∗Ti,s+Tp/P

We see that Ti,s 6= 0 will ALWAYS prevent us from profitably reaching
P → ∞. Amalsi and Gottlieb write this modified version of Amdahl’s Law for
the special case of a Master-Slave algorithm as:

1
S+(1−S)/P+P/r1

where they’ve introduced r1 = Ts/(P ∗ Ti,s), the ratio of compute time to
serial communications time, per node.

Even THIS isn’t pessimistic enough. It assumes “perfect” parallelizability.
In real code, the parallel tasks may well need to be organized so that they
complete in certain orders and parts are available where they are needed just
when they are needed. Then there may be random delays on the nodes due to
other things they are doing. All of this can further degrade performance.

Which leads us to...
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Problem Granularity and Synchronicity
The Key Parameters of Beowulf Design

Let us define two general kinds of parallel subtasks:

• Coarse Grain subtasks are those where Tp � Ti (r1 � 1) for both serial
and parallel IPC’s. Life is good – computation dominates IPC’s.

• Fine Grain subtasks are those where Tp ∼ Ti (r1 ∼ O(1)), or worse. Too
bad, IPC’s dominate computation.

In addition, each of these subtasks may be synchronous where they all have
to proceed together or asynchronous where they can proceed effectively indepen-
dently. This gives us at least four (really more) descriptors like “coarse grained
asynchronous code” or “fine grained, tightly coupled synchronous code”.

The former is easy to program on nearly any beowulf (or cluster!). There
are many valuable tasks in this category, which partly explains the popularity
of beowulfs.

Coarse grained synchronous code can also run well on most simple beowulf
designs, although it is harder to program and load balance efficiently. What
about moderate to fine grain code, though?
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The Good News – and the Bad News
The good news is that one can often find great profit using beowulfs to

solve problems with moderate to fine granularity. Of course, one has to work
harder to obtain such a benefit, both in programming and in the design of the
beowulf! Still, for certain problem scales the cost/benefit advantage of a “high
end” beowulf solution may be an order of magnitude greater than that of any
competitive “big iron” supercomputer sold by a commercial vendor.

There are, however, limits. Those limits are time dependent (recall Moore’s
Law) but roughly fixed on the timescale of the beowulf design and purchase
process. They are basically determined by what one can cost-effectively buy in
M2-COTS components.

For any given proposed beowulf architecture, if Tp is anywhere close to Ti,s,
chances are good that your parallel efforts are doomed. When it takes longer to
communicate what is required to take a parallel synchronous step than it does
to take the step, parallelization yields a negative benefit unless calculation size
is your goal.

Beowulf hardware and software engineering consists of MAKING YOUR
PROBLEM RELATIVELY COARSE GRAINED ON THE (COTS) HARD-
WARE IN QUESTION. That is, keeping Ti,s under control.



77

Estimating or Measuring Granularity
Estimating is difficult. Inputs include:

• “Bare” estimates of Ts and Tp (determined from gprof)..

• Raw network bandwidth (10 Mbps, 100 Mbps, 1000 Mbps) (test with
netperf, ttcp).

• Raw network latency (extremely variable) (test with netperf).

• Contributions and tradeoffs galore. The protocol stack, the paradigm,
hardware bottlenecks, the kernel, the interconnection structure, the at-
tempted number of nodes – all nonlinearly interact to produce Ti and the
modified Ts and Tp.

Experts rarely analyze beyond a certain point. They measure (or just know)
the base numbers for various alternatives and then prototype instead. Or they
ask on lists for experiences with similar problems. By far the safest and most
successful approach is to build (or borrow) a small 3-4 node switched 100BT
cluster (see recipe above) to prototype and profile your parallel code.

Remember that granularity is often something you can control (improve) by,
for example, working on a bigger problem or buying a faster network. Whether
or not this is sensible is an economic question.
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Repeat Until Done
Back to the Example

In a moment, we will think about specific ways to improve granularity and
come up with a generalized recipe for a beowulf or cluster that ought to be able
to Get the Job Done. First, let’s complete the “study the problem” section by
showing the results of prototyping runs of the “splitup the error evaluation”
algorithm for the neural net example at various granularities, on a switched
100BT network of 400 MHz PII nodes.

\# First round of timing results

\# Single processor on 300 MHz master ganesh, no PVM

0.880user 21.220sys 99.9%, 0ib 0ob 0tx 0da 0to 0swp 0:22.11

0.280user 21.760sys 100.0%, 0ib 0ob 0tx 0da 0to 0swp 0:22.04

\# Single processor on 400 MHz slave b4 using PVM

0.540user 11.280sys 31.3%, 0ib 0ob 0tx 0da 0to 0swp 0:37.65

0.700user 11.010sys 31.1%, 0ib 0ob 0tx 0da 0to 0swp 0:37.62

\# 2x400 MHz (b4, b9) with PVM

1.390user 14.530sys 38.3%, 0ib 0ob 0tx 0da 0to 0swp 0:41.48

\# 3x400 MHz (b4, b9, b11) with PVM

1.800user 18.050sys 46.5%, 0ib 0ob 0tx 0da 0to 0swp 0:42.60

This, of course, was terrible! The problem slowed down when we run it in
parallel! Terrible or not, this is typical for “small” prototyping runs and we
should have expected it.
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Clean Up the Hacks
We made two changes in the code. First, we eliminated some debugging

cruft in the slave code that was increasing the bottlenecked serial fraction. Sec-
ond, originally we multicast the network but sent each host its slice boundaries
serially. This, in retrospect, was stupid, as the communication was latency
bounded, not bandwidth bounded (small messages nearly always are). Instead
we multicast the entire slave slice assignments along with the weights and then
awaited the slave results.

The results now:

\# Single processor on 300 MHz master ganesh, no PVM. Guess not.

1.250user 20.630sys 99.9%, 0ib 0ob 0tx 0da 0to 0swp 0:21.90

\# Single processor on 400 MHz slave b4 using PVM. Better.

0.350user 10.460sys 32.9%, 0ib 0ob 0tx 0da 0to 0swp 0:32.79

2.380user 8.410sys 32.5%, 0ib 0ob 0tx 0da 0to 0swp 0:33.11

\# 2x400 MHz (b4, b9) with PVM

2.260user 11.140sys 37.7%, 0ib 0ob 0tx 0da 0to 0swp 0:35.53

\# 3x400 MHz (b4, b9, b11) with PVM

1.630user 11.160sys 40.3%, 0ib 0ob 0tx 0da 0to 0swp 0:31.67

\# 4x400 MHz (b4, b9, b11, b12) with PVM

2.720user 14.720sys 42.9%, 0ib 0ob 0tx 0da 0to 0swp 0:40.61

Still no gain, but closer!
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Crank Up the Granularity
Finally, we tried increasing the granularity a bit by using a bigger dataset.

We thus used a 16 bit divide by sevens problem. Small as the increase was, it
was big enough:

\# Single processor on 300 MHz master ganesh, no PVM. Takes longer.

9.270user 207.020sys 99.9%, 0ib 0ob 0tx 0da 0to 0swp 3:36.32

\# Single processor on 400 MHz slave b4 using PVM. Better.

4.380user 61.410sys 28.3%, 0ib 0ob 0tx 0da 0to 0swp 3:51.67

\# 2x400 MHz (b4, b9) with PVM. At last a distinct benefit!

3.080user 71.420sys 51.1%, 0ib 0ob 0tx 0da 0to 0swp 2:25.73

\# 3x400 MHz (b4, b9, b11) with PVM. Still better.

1.270user 70.570sys 58.9%, 0ib 0ob 0tx 0da 0to 0swp 2:01.89

\# 4x400 MHz (b4, b9, b11, b12) with PVM. And peak.

6.000user 71.820sys 63.3%, 0ib 0ob 0tx 0da 0to 0swp 2:02.83

\# More processors would actually cost speedup at this granularity.

We’re Home! A nice speedup, even for this SMALL (toy) problem. But why
are we bothering?
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Show me the Money...
We’re bothering because predictive modeling is valuable and time is money.

In an actual credit card cross-sell model built for a large North Carolina bank
(with 132 distinct inputs – optimization in 132 dimensions with sparse data!),
it took a full day and a half to run a single full network training cycle on a
single processor PII at 450 MHz. This can be too long to drive a real-time
direct phone campaign, and is annoyingly long from the point of view of tying
up compute resources as well.

A smaller version of the same credit card model was also run with only 22
inputs. This model required over two hours to run on a 400 MHz PII. We
benchmarked our new parallel neural network program on this smaller model
to obtain the following:

# CCA with 22 inputs. There are well over 4 million quadrants and only

# a few thousand members in the training set! A truly complex problem.

# Time with just one serial host

442.560user 7618.620sys 99.9%, 0ib 0ob 0tx 0da 0to 0swp 2:14:26.12

# Time with two PVM hosts

112.840user 1999.970sys 37.4%, 0ib 0ob 0tx 0da 0to 0swp 1:34:06.02

# Time with five PVM hosts

95.030user 2361.560sys 60.0%, 0ib 0ob 0tx 0da 0to 0swp 1:08:11.86
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Discovertm Conclusions
The scaling of our preliminary parallelization is still worse than we might

like, but the granularity is still a factor of 5 to 10 smaller than the real models
we wish to apply it to. We expect to be able to obtain a maximum speedup
of five or more with about eight Celeron nodes in actual application (that cost
little more altogether than many of our single or dual CPU PII’s did originally).

Finally, our profiling indicates that about 2/3 of the remaining serial code
(the regression routine, part of the conjugate gradient cycle, and the genetic
algorithm itself) can be parallelized as well. Using this parallelized network, we
expect to be able to tackle bigger, more complex networks and still get excellent
results.

This, in turn, will make both our clients money and (we hope) us money.
Thar’s Gold in Them Thar Hills (of the joint probability distribution being
modeled, of course)...
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At Last...How to Design a Beowulf
By this point, the answer should be obvious, which is why I saved it until

now. AFTER one has finished studying the problem, or problems, one plans
to run on the beowulf, the design parameters are real things that apply to the
actual bottlenecks you encountered and parallel computation schema you expect
to implement, not just things “rgb told me to use”. The following is a VERY
ROUGH listing of SOME of the possible correspondances between problem and
design solution:
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Problem: Embarrassingly coarse grained problems; e.g. Monte Carlo simu-
lations.

Solution: Anything at all. Typically CPU bound, r1 all but infinite. I can
get nearly perfect parallelization of my Monte Carlo code by walking between
consoles of workstations, loading the program from a floppy, and coming back
later to collect the results on the same floppy. Beowulf based on sneakernet,
yeah! Of course, a network makes things easier and faster to manage...

Advise to builders: Focus on the CPU/memory cost/benefit peak and single
system bottlenecks, not the network. Get a decent network though – these days
switched 100 BT is sort of the lowest common denominator because it is so
cheap. You might want to run your simulations in not-so-coarse grain mode
one day. Also be aware that ordinary workstation clusters running linux can
work on a problem with 98% of the CPU and still provide “instant” interactive
response. A MAJOR REASON for businesses to consider linux clusters is that
their entire office can “be” a parallel supercomputer even while the desktop
units it’s composed of enable folks to read mail and surf the web! No Microsoft
product can even think of competing here.
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Problem: Coarse grained problems (but not embarrassingly so) to medium
grain problems; e.g. Monte Carlo problems where a lattice is split up across
nodes, neural networks.

Solution: The “standard beowulf” recipe still holds IF latency isn’t a prob-
lem. A switched 100 BT network of price/performance-optimal nodes is a good
choice. Check carefully to ensure that cache size and memory bus are suitable
on the nodes. Also, take more care that the network itself is decent – you do
have to transmit a fair amount of data between nodes, but there are clever ways
to synchronize all this. If bandwidth (not latency) becomes a problem, consider
channel bonding several 100 BT connections through a suitable switch.

Advise to builders: Think about cost/benefit very carefully. There is no
point in getting a lot more network than you need right now. It will be faster
and cheaper next year if that’s when you’ll actually (maybe) need it. Get a
cheap net and work up. Also do you really need 512 MB of node memory when
your calculation only occupies 20 MB? Do you need a local disk? Is cache or
cost a major factor? Are you really CPU bound and do you need very fast nodes
(so Alpha’s make sense)?

You are in the “sweet spot” of beowulf design where they are really im-
mensely valuable but not too hard or expensive to make. Start small, prototype,
scale up what works.
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Problem: Medium to fine grained problems; e.g. molecular dynamics with
long range forces, hydrodynamics calculations – examples abound. These are
the problems that were once the sole domain of Big Iron “real” parallel super-
computers. No more.

Solution: Make the problem coarse grained, of course, by varying the design
of the program and the beowulf until this can be achieved. As Walter Ligon (a
luminary of the beowulf list) recently noted, a beowulf isn’t really suited for fine
grained code. Of course, no parallel computing environment is well-suited for
fine grained code – the trick is to pick an environment where the code you want
to run has an acceptable granularity. Your tools for achieving this are clever
and wise programming, faster networks and possibly nodes, and increasing the
problem size.

The “standard” solution for fine(r) grain code is to convert to Myrinet (or
possibly gigabit ethernet as its latency problem is controlled). This can reduce
your Ti by an order of magnitude if you are lucky, which will usually make
a fine grained problem coarse enough to get decent gain with the number of
processors once again. If your problem is (as is likely enough) ALSO memory
bound (big matrices, for example), possessed of a large stride (ditto), and CPU
bound, seriously consider the AlphaLinux+Myrinet solution described by Greg
Lindahl (for example) or wait for the K7 or Merced. If it is just IPC bound,
it may be enough to get a faster network without increasing CPU speed (and
cost) significantly – diverting a larger fraction of one’s resources to the network
is the standard feature of dealing with finer problem granularities.

Advise to builders: Take the problem seriously. Get and read Almasi and
Gottlieb or other related references on the theory and design of parallel code.
There are clever tricks that can significantly improve the ratio of computation
to communication and I’ve only scratched the surface of the theory. Don’t be
afraid to give up (for now). There are problems that it just isn’t sensible to
parallelize. Also don’t be put off by a bad prototyping experience. As one
ramps up the scale (and twiddles the design of the beowulf) one can often get
dramatic improvements.
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Summary
• Remember Amdahl’s Law (and variants)

• Bottlenecks (serial and parallel)

• Make crude estimates of Ts, Tp, and Ti,s/p.

• Give up if Tp/T is too small to be worth it.

• Seek cheapest/simplest design for which Tp/Ti and AL predict decent
speedup for a cost-effective value of P .

• Beware nonlinearities in general, P -dependent serial costs in Ti especially
(common in master/slave) and remain aware of synchronization issues.
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Conclusion
Beowulfs and linux clusters in general are an amazingly cost effective way

to collect the cycles necessary to do large scale computing, if your problem has
an appropriate granularity and parallelizable fraction. On the advanced end,
they are rapidly approaching the efficiency of systems that cost ten or more
times as much from commercial vendors. On the low end, they are bringing
supercomputing “home” to elementary schools and even homes (this cluster
lives in my “typical” home, for example).

There are clearly huge opportunities for making money by solving previously
inaccessible problems using this technology, especially in business modeling and
data mining. E pluribus penguin, and for Microsoft sic gloria transit mundi.
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Specific Parallel Models

8.1 Embarrassingly Parallel Computations

We’ve already talked some about EPC’s, but as they are the bread and butter
of cluster computation we’ll consider them in detail here. If your computational
work tends to consist of running a series of more or less independent jobs on
your computer, perhaps varying the parameters (or perhaps not), then you are
an obvious candidate for a compute cluster. You are the most fortunate of souls,
as well, because in most cases you don’t much care about the design details of
the cluster.

There are many useful tasks that fall into this general category, but perhaps
the cleanest example of an EPC task is Monte Carlo calculations and other
forms of statistical simulation. This is near and dear to my own heart as it is
what I do as a physicist1.

8.1.1 The Network is the Computer: MOSIX

8.1.2 Batch Systems with a Heart: Condor

8.1.3 Master-Slave Calculations

A classic example of this is the version of Amdahl’s Law for the special case of
a master-slave algorithm, where one “master” node sends out the task(s) to P
“slave” nodes2. This is in the class of “simple” parallel tasks, so the formula
above works, often with just one parallelizable subtask that the “master” node
splits up and sends to the “slave” nodes to do. If you sat at the front of a room
filled with 10 friends with a stack of 100 model airplanes to build, a master-
slave approach is to walk around handing out a kit to each and then kick back,
tapping your feet for twenty minutes until they all finish. Then you walk around

1In case you were wondering how a physicist came to be writing this book, I put the story
– which is not without its edifying points – in an Appendix at the end.

2It’s not what you were thinking it was at all, was it? Shame on you.
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and pick up the finished airplanes and give them the next kit. You might then
even do some work on them yourself (put them in a box to be shipped to model-
airplaneless children, for example, or throw them out a window to see if they
fly) while they work on the next ones, repeat until done3.

From this we see that master-slave calculations (MSC) have an intimate
relationship with embarrassingly course grained calculations (ECGC) – one way
to implement nearly any ECGC is as a MSC. So to speak. However, not all MSC
are ECG. To see this, we have to learn what the word’s “coarse grained” (or
medium grained of fine grained or granularity in general) mean in the general
context of parallel computing. We’ll do this later.

Amdahl’s Law becomes:

R(P )

R(1)
≤

1

S + (1 − S)/P + P/r1
. (8.1)

In this, S is the serial fraction of the code (the time you spend piling all the
boxes up on a table before beginning), (1− S) is the parallel fraction (building
the airplanes and throwing them out the window), and r1 = Ts/(P ∗ Ti,sp), the
ratio of serial compute time to serial communications time, per node (the

Even THIS isn’t pessimistic enough. It assumes “perfect” parallelizability.
In real code, the parallel tasks may well need to be organized so that they
complete in certain orders and parts are available where they are needed just
when they are needed. Then there may be random delays on the nodes due to
other things they are doing. All of this can further degrade performance.

Which leads us to...

8.2 Lattice Models

8.3 Long Range Models

3At the end of much more of this, you won’t HAVE any friends. Who wants to be a slave?
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Chapter 9

Node Hardware

9.1 Rates, Latencies and Bandwidths

In order to achieve the best scaling behavior, we can see from the previous
chapter that we want to maximize the parallel fraction of a program (the part
that can be split up) and minimize the serial fraction (which cannot). We also
want to maximize the time spend doing work in parallel on each node and
minimize the time required to communicate between nodes. We want to avoid
wasting time by having some nodes sit idle waiting for other nodes to finish.

However, we must be cautious and clearly define our real goals as in general
they aren’t to “achieve the best scaling behavior” (unless one is a computer
scientist studying the abstract problem, of course). More commonly in appli-
cation, they are to “get the most work done in the least amount of time given
a fixed budget”. When economic constraints appear in the picture one has to
carefully consider trade-offs between the computational speed of the nodes, the
speed and latency of the network, the size of memory and its speed and latency,
and the size, speed and latency of any hard storage subsystem that might be
required. Virtually any conceivable combination of system and network speed
can turn out to be cost-benefit optimal and get the most work done for a given
budget and parallel task.

As the discussion proceeds, it will become clear why successful beowulf de-
sign focusses on the problem as much as it does on the hardware. One perfectly
reasonable conclusion a reader can draw from this chapter is that understanding

the nuances of computer hardware and their effect on program speed is ludi-
crously difficult and that only individuals with some sort of obsessive-compulsive
personality disorder would ever try it. It is so much simpler to just measure the
performance of any given hardware platform on your program.

When you achieve this Satori, Bravo! However, be warned that the wisest
course is to both measure performance and understand at least a bit about how
that measured performance is likely to vary when you vary things like the clock
speed of your CPU, the CPU’s manufacturer, the kind and speed of the memory
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subsystem, and the network.
The variations can be profound. As we’ll see, when we double the size of

(say, vectors being multiplied within) a program it can take twelve or more

times as long to complete for certain ranges of sizes. You could naively make
your measurement where performance is great, expecting it to remain great in
production for much larger vectors or matrices. You could then expend large
sums of money buying nodes, fail miserably to get the work accomplished that
you expected to accomplish for that sum, and (fill in your own favorite personal
disaster) get fired, not get tenure, lose your grant, go broke, lose the respect
of your children and pets. Alternatively, you could make your measurement
for large matrices, assume that fast memory systems are essential and spend a
great deal for a relative few of them, only to find that by the time the problem
is split up it would run just as fast on nodes with slower memory that cost 1/10
as much (so you could have bought 10x as many).

This isn’t as hard to understand is it may now seem. I’ll try to explain how
and why this can occur and illustrate it with enough pictures and graphs and
examples that it becomes clear. Once you understand what this chapter has to
offer, you’ll understand how to study your problem in a way that is unlikely to
produce embarrassing and expensive mistakes in your final beowulf design.

9.1.1 Microbenchmarking Tools

Finding the truly optimum design can be difficult. In some cases the only

way to determine a program’s performance on a given hardware and software
platform (or beowulf design) is to do a lot of prototyping and benchmarking
of the program itself. From this one can generally determine the best design
empirically (where hopefully one has enough funding in these cases to fund
the prototyping and then scale the successful design up into the production
beowulf). This is almost always the best thing to do, if one can afford it.

However, even if you are able to prototype and benchmark your actual ap-
plication, the design process is significantly easier if one possesses a detailed and
quantitative knowledge of various microscopic rates, latencies, and bandwidths

and how they depend nonlinearly on certain system and program parameters
and features. Let’s begin by understanding just what these things are.

• A rate is a given number of operations per unit time, for example, the
number of double precision multiplications a CPU can execute per second.
We might like to know the “maximum” rate a CPU can execute floating
point instructions under ideal circumstances. We might be even more
interested in how the “real world” floating point rate depends on (for
example) the size and locality of the memory references being operated
upon.

• A latency is is the time the CPU (or other subsystem) has to wait for a
resource or service to become available after it is requested and has units
of an inverse rate – milliseconds per disk seek, for example. A latency
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isn’t necessarily the inverse of a rate, however, because the latency often
is very different for an isolated request and a streaming series of identical
requests.

• A bandwidth is a special case of a rate. It measures “information per unit
time” being delivered between subsystems (for example between memory
and the CPU). Information in the context of computers is typically data
or code organized as a byte stream, so a typical unit of bandwidth might
be megabytes per second.

Latency is very important to understand and quantify as in many cases our
nodes will be literally sitting there and twiddling their thumbs waiting for a
resource. Latencies may be the dominant contribution to the communications
times in our performance equations above. Also (as noted) rates are often the
inverse of some latency. One can equally well talk about the rate that a CPU
executes floating point instructions or the latency (the time) between successive
instructions which is its inverse. In other cases such as the network, memory,
or disk, latency is just one factor that contributes to overall rates of streaming
data transfer. In general a large latency translates into a low rate (for the same
resource) for a small or isolated request.

Clearly these rates, latencies and bandwidths are important determinants
of program performance even for single threaded programs running on a
single computer. Taking advantage of the nonlinearities (or avoiding their
disadvantages can result in dramatic improvements in performance, as the AT-
LAS (Automatically Tuned Linear Algebra System) [ATLAS] project has re-
cently made clear. By adjusting both algorithm and blocksize to maximally
exploit the empirical speed characteristics of the CPU in interaction with the
various memory subsystems, ATLAS achieves a factor of two or more improve-
ment in the excution speed of a number of common linear operations. Intelligent
and integrated beowulf design can similarly produce startling improvements in
both cost-benefit and raw performance for certain tasks.

It would be very useful to have automatically available all of the basic rates
that might be useful for automatically tuning program and beowulf design. At
this time there is no daemon or kernel module that can provide this empirically
determined and standardized information to a compiled library. As a conse-
quence, the ATLAS library build (which must measure the key parameters in
place) is so complex that it can take hours to build on a fast system.

There do exist various standalone (open source) microbenchmarking tools
that measure a large number of the things one might need to measure to guide
thoughtful design. Unfortunately, many of these tools measure only isolated
performance characteristics, and as we will see below, isolated numbers are not
always useful. However, one toolset has emerged that by design contains (or
will soon contain) a full suite of the elementary tools for measuring precisely
the rates, latencies, and bandwidths that we are most interested in, using a
common and thoroughly tested timing harness. This tool is not complete1 but

1More time was spent by the author of this paper working on and with the tool than on
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it has the promise of becoming the fundamental toolset to support systems
engineering and cluster design. It is Larry McVoy and Carl Staelin’s “lmbench”
toolset[lmbench].

There are two areas where the alpha version 2 of this toolset used in this
paper was still missing tools to measure network throughput and raw “numer-
ical” CPU performance (although many of the missing features and more have
recently been added to lmbench by Carl Staelin after some gentle pestering).
The well-known netperf (version 2.1, patch level 3) [netperf] and a privately
written tool [cpu-rate] were used for this in the meantime.

All of the tools that will be discussed are open source in the sense that their
source can be readily obtained on the network and that no royalties are charged
for its use. The lmbench suite, however, has a general use license that is slightly
more restricted than the usual Gnu Public License (GPL) as described below.

In the next subsections the results of applying these tools to measure system
performance in my small personal beowulf cluster[Eden] will be presented. This
cluster is moderately heterogeneous and functions in part as a laboratory for
beowulf development. A startlingly complete and clear profile of system perfor-
mance and its dependence on things like code size and structure will emerge.

9.1.2 Lmbench Results

In order to publish lmbench results in a public forum, the lmbench license re-

quires that the benchmark code must be compiled with a “standard” level of
optimization (-O only) and that all the results produced by the lmbench suite
must be published. These two rules together ensure that the results produced
compare as fairly as possible apples to apples when considering multiple plat-
forms, and prevents vendors or overzealous computer scientists from seeking
”magic” combinations of optimizations that improve one result (which they
then selectively publish) at the expense of others.

Accordingly, on the following page is a full set of lmbench results generated
for “lucifer”, the primary server node for my home (primarily development)
beowulf [Eden]. The mean values and error estimates were generated from
averaging ten independent runs of the full benchmark. lucifer is a 466 MHz
dual Celeron system, permitting it to function (in principle) simultaneously as
a master node and as a participant node. The cpu-rate results are also included
on this page for completeness although they may be superseded by Carl Staelin’s
superior hardware instruction latency measures in the future.

lmbench clearly produces an extremely detailed picture of microscopic sys-
tems performance. Many of these numbers are of obvious interest to beowulf
designers and have indeed been discussed (in many cases without a sound quan-
titative basis) on the beowulf list [beowulf]. We must focus in order to conduct
a sane discussion in the allotted space. In the following subsections on we will
consider the network, the memory, and the cpu-rates as primary contributors
to beowulf and parallel code design.

the paper:-)
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HOST lucifer
CPU Celeron (Mendocino) (x2)
CPU Family i686
MHz 467
L1 Cache Size 16 KB (code)/16 KB (data)
L2 Cache Size 128 KB
Motherboard Abit BP6
Memory 128 MB of PC100 SDRAM
OS Kernel Linux 2.2.14-5.0smp
Network (100BT) Lite-On 82c168 PNIC rev 32
Network Switch Netgear FS108

Table 9.1: Lucifer System Description

null call 0.696± 0.006
null I/O 1.110± 0.005
stat 3.794± 0.032
open/close 5.547± 0.054
select 44.7± 0.82
signal install 1.971± 0.006
signal catch 3.981± 0.002
fork proc 634.4± 28.82
exec proc 2755.5± 10.34
shell proc 10569.0± 46.92

Table 9.2: lmbench latencies for selected processor/process activities. The val-
ues are all times in microseconds averaged over ten independent runs (with error
estimates provided by an unbiased standard deviation), so “smaller is better”.

2p/0K 1.91± 0.036
2p/16K 14.12± 0.724
2p/64K 144.67± 9.868
8p/0K 3.30± 1.224
8p/16K 48.45± 1.224
8p/64K 201.23± 2.486
16p/0K 6.26± 0.159
16p/16K 63.66± 0.779
16p/64K 211.38± 5.567

Table 9.3: Lmbench latencies for context switches, in microseconds (smaller is
better).
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pipe 10.62± 0.069
AF UNIX 33.74± 3.398
UDP 55.13± 3.080
TCP 127.71± 5.428
TCP Connect 265.44± 7.372
RPC/UDP 140.06± 7.220
RPC/TCP 185.30± 7.936

Table 9.4: Lmbench local communication latencies, in microseconds (smaller is
better).

UDP 164.91± 2.787
TCP 187.92± 9.357
TCP Connect 312.19± 3.587
RPC/UDP 210.65± 3.021
RPC/TCP 257.44± 4.828

Table 9.5: Lmbench network communication latencies, in microseconds (smaller
is better).

L1 Cache 6.00± 0.000
L2 Cache 112.40± 7.618
Main mem 187.10± 1.312

Table 9.6: Lmbench memory latencies in nanoseconds (smaller is better). Also
see graphs for more complete picture.

pipe 290.17± 11.881
AF UNIX 64.44± 3.133
TCP 31.70± 0.663
UDP (not available)
bcopy (libc) 79.51± 0.782
bcopy (hand) 72.93± 0.617
mem read 302.79± 3.054
mem write 97.92± 0.787

Table 9.7: Lmbench local communication bandwidths, in 106 bytes/second (big-
ger is better).

TCP 11.21± 0.018
UDP (not available)

Table 9.8: Lmbench network communication bandwidths, in 106 bytes/second
(bigger is better).
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Single precision 289.10± 1.394
Double precision 299.09± 2.295

Table 9.9: CPU-rates in BOGOMFLOPS – 106 simple arithmetic opera-
tions/second, in L1 cache (bigger is better). Also see graph for out-of-cache
performance.

These are not at all independent. The rate at which the system does floating
point arithmetic on streaming vectors of numbers is very strongly determined
by the relative size of the L1 and L2 cache and the size of the vector(s) in
question. Significant (and somewhat unexpected) structure is also revealed in
network performance as a function of packet size, which suggests “interesting”
interactions between the network, the memory subsystem, and the operating
system that are worthy of further study.

9.1.3 Netperf Results

Netperf is a venerable and well-written tool for measuring a variety of critical
measures of network performance. Some of its features are still not duplicated
in the lmbench 2 suite; in particular the ability to completely control variables
such as overall message block size and packet payload size.

A naive use of netperf might be to just call
netperf -H targethost

to get a quick and dirty measurement of TCP stream bandwidth to a given
target. However, as the lmbench TCP latency shows (see table 5), it takes some
150-200 microseconds to transmit a one-byte TCP packet message (on lucifer) or
at most 5000-7000 packets can be sent per second. For small packets this results
in far less than the “wirespeed dominated” bandwidth – the actual bandwidth
observed for small messages is dominated by latency.

For each message sent, the time required goes directly into an IPC time like
Tis. In the minimum 200 microseconds that are lost, the CPU could have done
tens of thousands of floating point operations! This is why network latency is
an extremely important parameter in beowulf design.

Bandwidth is also important – sometimes one has only a single message to
send between processors, but it is a large one and takes much more than the 200
microseconds latency penalty to send. As message sizes get bigger the system
uses more and more of the total available bandwidth and is less affected by
latency. Eventually throughput saturates at some maximum value that depends
on many variables. Rather than try to understand them all, it is is easier (and
more accurate) to determine (maximum) bandwidth as a function of message
size by direct measurement.

Both netperf and bw tcp in lmbench allow one to directly select the message
size (in bytes) to make a measurements of streaming TCP throughput. With a
simple perl script one can generate a fine-grained plot of overall performance as
a function of packet size. This has been done for a 100BT connection between
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Figure 9.1: TCP Stream (netperf) measurements of bandwidth as a function of
packet size between lucifer and eve.

lucifer and “eve” (a reasonably similar host on the same switch) as a function
of packet size. These results are shown in figure 9.1.

Figure 9.1 reveals a number of surprising and even disappointing features.
Bandwidth starts out small at a message size of one byte (and a packet size of
64 bytes, including the header) and rapidly grows roughly linearly at first as one
expects in the latency-dominated regime where the number of packets per second
is constant but the size of the packets is increasing. However, the bandwidth
appears to discontinuously saturate at around 55 Mbps for packet sizes around
130 bytes long or longer. There is also considerable (unexpected) structure
even in the saturation regime with sharp packet size thresholds. The same
sort of behavior (with somewhat different structure and a bit better asymptotic
large packet performance) appears when bw tcp is used to perform the same
measurement. We see that the single lmbench result of a somewhat low but
relatively normal 11.2 MBps (90 Mbps) for large packets in table 8 hides a
wealth of detail and potential IPC problems, although this single measure is all
that would typically be published to someone seeking to build a beowulf using
a given card and switch combination.

9.1.4 CPU Results

The CPU numerical performance is one of the most difficult components to
precisely quantify. On the one hand, peak numerical performance is a measure
always published by the vendor. On the other hand, this peak is basically never
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seen in practice and is routinely discounted.

CPU performance is known to be heavily dependent on just what the CPU
does, the order in which it does it, the size and structure and bandwidths
and latencies of its various memory subsystems including L1 and L2 caches,
and the way the operating system manages cached pages. This dependence is
extremely complex and studying one measure of performance for a particular
set of parameters is not very illuminating if not misleading. In order to get any
kind of feel at all for real world numerical performance, floating point instruction
rates have to be determined for whole sweeps of e.g. accessed vector memory
lengths.

What this boils down to is that there is very little numerical code that
is truly “typical” and that it can be quite difficult to assign a single rate to
floating point operations like addition, subtraction, multiplication, and division
that might not be off by a factor of five or more relative to the rate that these
operations are performed in your code. This translates into large uncertainties
and variability of, for example, Tp with parallel program scale and design.

Still, it is unquestionably true that a detailed knowledge of the “MFLOPS”
(millions of floating point operation per second) that can be performed in an
inner loop of a calculation is important to code and beowulf design. Because
of the high dimensionality of the variables upon which the rate depends (and
the fact that we perforce must project onto a subspace of those variables to get
any kind of performance picture at all) the resulting rate is somewhat bogus
but not without it uses, provided that the tool used to generate it permits the
exploration of at least a few of the relevant dimensions that affect numerical
performance. Perhaps the most important of these are the various memory
subsystems.

To explore raw numerical performance the cpu-rate benchmark is used
[cpu-rate]. This benchmark times a simple arithmetic loop over a vector of
a given input length, correcting for the time required to execute the empty loop
alone. The operations it executes are:

x[i] = (1.0 + x[i])*(1.5 - x[i])/x[i];

where x[i] is initialized to be 1.0 and should end up equal to 1.0 (within any
system roundoff error) afterwards as well.

Each execution of this line counts as “four floating point operations” (one of
each type, where x[i] might be single or double precision) and by counting and
timing one can convert this into FLOPS. As noted, the FLOPS it returns are
somewhat bogus – they average over all four arithmetic operations (which may
have very different rates), they contain a small amount of addressing arithmetic
(to access the x[i] in the first place) that is ignored, they execute in a given
order which may or many not accidentally benefit from floating point instruction
pipelining in a given CPU, they presuming streaming access of the operational
vector.

Still, this is more or less what what I think “most people” would mean when
they ask how fast a system can do floating point arithmetic in the context of a
loop over a vector. We’ll remind ourselves that the results are bogus by labeling
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Figure 9.2: Double precision floating point operations per second as a function of
vector length (in bytes). All points average 100 independent runs. The dashed
lines indicate the locations of the L1 and L2 cache boundaries.

Figure 9.3: The standard deviation (error) associated with figure 9.2.
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them “BOGOflops”.

These rates will be largest when both the loop itself and the data it is working
on are already “on the CPU” in registers, but for most practical purposes this
rarely occurs in a core loop in compiled code that isn’t hand built and tuned.
The fastest rates one is likely to see in real life occur when the data (and
hopefully the code) live in L1 cache, just outside the CPU registers. lmbench
contains tests which determine at least the size of the L1 data cache size and its
latency. In the case of lucifer, the L1 size is known to be 16 KB and its latency
is found by lmbench to be 6 nanoseconds (or roughly 2-3 CPU clocks).

However, compiled code will rarely will fit into such a small cache unless it
is specially written to do so. In any event we’d like to see what happens to the
floating point speed as the length of the x[i] vector is systematically increased.
Note that this measurement combines the raw numerical rate on the CPU with
the effective rate that results when accounting for all the various latencies and
bandwidths of the memory subsystem. Such a sequence of speeds as a function
of vector lengths is graphed in figure 9.2.

This figure clearly shows that double precision floating point rates vary by
almost an order of magnitude as the vector being operated on stretches from
wholly within the L1 cache to several times the size of the L2 cache. Note
also that the access pattern associated with the vector arithmetic is the most

favorable one for efficient cache operation – sequential access of each vector
element in turn. The factor of about seven difference in the execution speeds as
the size of this vector is varied has profound implications for both serial code
design and parallel code design. For example, the whole purpose of the ATLAS
project [ATLAS] is to exploit the tremendous speed differential revealed in the
figure by optimally blocking problems into in-cache loops when doing linear
algebra operations numerically.

There is one more interesting feature that can be observed in this result.
Because linux on Intel lacks page coloring, there is a large variability of numerical
speeds observed between runs at a given vector size depending on just what
pages happen to be loaded into cache when the run begins. In figure 9.3 the
variability (standard deviation) of a large number (100) of independent runs
of the cpu-rate benchmark is plotted as a function of vector size. One can
easily pick out the the L1 and L2 cache boundaries as they neatly bracket the
smooth peak visible in this figure. Although the L1 cache boundary is simple
to determine directly from tests of memory speed, the L2 cache boundary has
proven difficult to directly observe in benchmarks because of this variability.
This is a new and somewhat exciting result – L2 boundaries can be revealed by
a “susceptibility” of the underlying rate.

9.2 Conclusions

We now have many of the ingredients needed to determine how well or poorly
lucifer (and its similar single-Celeron nodes, adam, eve, and abel) might perform
on a simple parallel task. We also have a wealth of information to help us tune
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the task on each host to both balance the loads and to take optimal advantage of
various system performance determinants such as the L1 and L2 cache bound-
aries and the relatively poor (or at least inconsistent) network. These numbers,
along with a certain amount of judicious task profiling (for a description of the
use of profiling in parallelizing a beowulf application see [profiling]) can in turn
be used to determine the parameters that describe a given task like Ts, Tp, Tis

and Tip.
In addition, we have scaling curves that indicate the kind of parallel speedup

we can expect to obtain for the task on the hardware we’ve microbenchmark-
measured, and by comparing the appropriate microbenchmark numbers we
might even be able to make a reliable guess at what the numbers and scal-
ing would be on related but slightly different hardware (for example on a 300
MHz Celeron node instead of a 466 MHz Celeron node).

With these tools and the results they return, one can at least imagine being
able to scientifically:

• develop a parallel program to run efficiently on a given beowulf

• tune an existing program on a given beowulf by considering for example
bottlenecks and program scale

• develop a beowulf to run a given parallel program efficiently

• tune an existing beowulf to yield improved performance on a given pro-
gram, or

• simultaneously develop, improve, and tune a matched beowulf design and
parallel program together

even if one isn’t initially a true expert in beowulf or general systems performance
tuning. Furthermore, by using the same tools across a wide range of candidate
platforms and publishing the comparative results, it may eventually become
possible to do the all important optimization of cost-benefit that is really the
fundamental motivation for using a beowulf design in the first place.

It is the hope of the author that in the near future the lmbench suite develops
into a more or less standard microbenchmarking tool that can be used, along
with a basic knowledge of parallel scaling theory, to identify and aggressively
attack the critical bottlenecks that all too often appear in beowulf design and
operation. An additional, equally interesting possibility would be to transform
it into a daemon or kernel module that periodically runs on all systems and
provides a standard matrix of performance measurements available from simple
systems calls or via a /proc structure. This, in turn, would facilitate many,
many aspects of the job of dynamically maximizing beowulf or general systems
performance in the spirit of ATLAS but without the need to rebuild a program.
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Network Hardware

This chapter is devoted to perhaps the most important part of cluster design –
the network. After all, nodes are relatively simple – you get what you pay for,
you pay for what you get. For the most part, within a processor family, your
serial task performance scales in fairly obvious ways with cpu clock, memory
amount, type, speed, and so forth.

Not so with networking. Networks are intrinsically complex. In addition to
the barebones concepts of latency and bandwidth we’ve already covered, issues
like topology, probability, task organization, and various pieces of deep hardware-
level magic come into play. Oh, and let’s not forget the kernel, the device driver
that interfaces device with the kernel, the networking stack that lives on top of
the hardware device and its kernel device driver, the API between the driver
and/or its networking stack, and of course your application. With maybe a
layer or two more in there – no kidding.

Networks are so complex that I’ve found writing this chapter to be somewhat
daunting and have hence postponed it again and again. They are also so rapidly
varying that no matter what I write, the part at the bleeding edge will be
obsolete (or at least, no longer bleeding edge and probably partly wrong) almost
as fast as I write it and put it out there on the web.

Still, it’s jobs that never get started that takes longest to finish, as Sam
Gamgee’s gaffer would say. So let’s have at it. If you read this chapter and find
that it is still incomplete, a) no surprise, it will take me a long time to write
even a decently complete first draft; and b) feel free to bug me to finish it.

By the same token, if you really understand networking already and find
something in this chapter that is egregiously in error (or for that matter, very
subtley in error) you should feel free to correct me, if necessary with a whomp
upside the head. I’m doing my best here, but some of these networks are
expensive and until I either really need them or the vendors decide that they
just have to loan me or give me a half-dozen cards worth to test and write about,
I’m going to be writing at least partly on the basis of the vendors’ published
specifications, what I’ve gleaned from the beowulf list, what friends of mine who
do run the networks have told me.
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Finally, if you are a real expert in one of the high end networks and find my
articles below to be hopelessly incompetent, well, remember that this is an open

source, open license publication, and that I would cherish contributions from real
experts. I’ll even leave your very own name at the top of the section title, and
ensure that it appears with the chapter in the TOC as well, so you get proper
blame – uh, I mean credit – instead of me. High end networking companies,
this goes for you as well – feel free to write your OWN (non-marketing-hype)
description of your networking including a cost-benefit analysis and I’ll cheer-
fully include it as a subsection – look, ma, free marketing, right where it does
the most good!

The major editorial point being, the readers of this online book want useful,
informed information about your products so they can make intelligent, cost-
beneficial decisions about spending their money. You’d like for them to have all
this information about your product so that they’ll choose to buy it. Fine, we
can work together on that basis, as long as you don’t disrespect other’s prod-
ucts or get into marketspeak. The readers of this document are all very likely
to be technically competent shoppers and will want a technical and economic
presentation, complete with at least ballpark prices.

Now, on to the meat of the matter. I’m going to try to organize this docu-
ment in the following way. First, I’ll present a very modest review of the basic
concepts of networking, such as the ISO/OSI layers, the concept and general
structure of a “packet”, a bit of discussion of latency and bandwidth again
(sorry, but this is a key context and requires it), and anything else likely to
apply to “all networks”. As a subsection, I’ll present an equally compressed
view of TCP/IP as one particular, important implementation of the network
and transport layers. This won’t be anywhere near enough to teach you to
manage a TCP/IP network, but should give you a working knowledge of its
basic concepts.

Then we’ll run a set of sections on particular physical networks: Ethernet,
SCI, Myrinet, and possibly more exotic networks (e.g. HIPPI) as I have the
time and patience to figure them out or someone knowledgeable volunteers to
write for me.

To permit me to reissue a book snapshot with this chapter finally not empty
before I finish it, I’m going to cheat. A lot of what I’m going to put in this
chapter comes from resources that I’ve either patiently collected over the last
seventeen or so years or from resources that are readily available online. In fact,
since most of the resources I’ve collected are ones that I make available online,
one could say that all of it can be found on the web – somewhere (except
where a copyright problem exists that might preclude republication). So for
starters, every currently planned chapter will contain at the very least a list of
web-resources you can click through – a reference to the vendor’s website, for
example.

That way, even if I’m still relatively ignorant of the network in question or
am a world’s-greatest-expert but just haven’t had time to write the document
(and which is which, you wonder, heh, heh) you’ll be able to make some progress
toward the all-important decision: what is the right network for my cluster?
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Just to preview a part of the answer before we get started – it will almost
certainly be TCP/IP on top of switched 100BT ethernet and (possibly) one of
the high end, expensive the networks, depending on what you’re planning to do.
Switched 100BT has gone from nonexistent to expensive (as in tens of thousands
of dollars) to quite cheap indeed in the years I’ve been doing cluster computing,
and at this point it is so cheap, so ubiquitous, and so adequate for routine
networking chores that it is hard to imagine a network without it. Perhaps in a
few years it will be superceded by 1000BT ethernet as it once superceded 10BT
ethernet, but in the meantime it is all but universal.

10.1 Basic Networking 101

Until this section gets filled in, here are some online resources:

• Charles L. Hedrick’s

<a href="http://www.phy.duke.edu/~rgb/Beowulf/local.guide">

Introduction to the Administration of a Local Area Network</a>

• Charles L. Hedrick’s

<a href="http://www.phy.duke.edu/~rgb/Beowulf/IP.intro">

Introduction to the Internet Protocols</a>

• W. Richard Stevens’

<a href="http://www.kohala.com/start/">Personal Website</a>.

The late Dr. Stevens was the man where TCP/IP networking is concerned.
His books are legendary. They are listed and linked to this website, al-
though there are also various online resources and recipes here, primarily
for the programmer.

10.1.1 Networking Concepts

10.1.2 TCP/IP

10.2 Ethernet

Until this section gets filled in, here are some online resources:

• <a href="http://www.ethermanage.com/ethernet/ethernet.html">Charles

Spurgeon’s Ethernet Site</a>
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10.2.1 10 Mbps Ethernet

10.2.2 100 Mbps Ethernet

10.2.3 1000 Mbps Ethernet

10.3 The Dolphin Serial Channel Interconnect

Until this section gets filled in, here are some online resources:

• <a href="http://www.dolphinics.com/index.html">Dolphin Serial Channel

Interconnect</a>

10.4 Myrinet

Until this section gets filled in, here are some online resources:

• <a href="http://www.myri.com/">Myricom Home Page</a>
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Chapter 11

Building and Maintaining a
Beowulf

One question that is commonly enough asked on the beowulf list is “How hard
is it to build or care for a beowulf?”

Mind you, it is quite possible to go into beowulfery with no more than
a limited understanding of networking, a handful of machines (or better, a
pocketful of money) and a willingness to learn, and over the years I’ve watched
and sometimes helped as many groups and individuals (including myself) in
many places went from a state of near-total ignorance to a fair degree of expertise
on little more than guts and effort.

However, this sort of school is the school of hard (and expensive!) knocks;
one ought to be able to do better and not make the same mistakes and reinvent
the same wheels over and over again, and this book is an effort to smooth the
way so that you can.

One place that this question is often asked is in the context of trying to
figure out the human costs of beowulf construction or maintenance, especially
if you’re first cluster will be a big one and has to be right the first time. After
all, building a cluster of more than 16 or so nodes is an increasingly serious
proposition. It may well be that beowulfs are ten times cheaper than a piece of
“big iron” of equivalent power (per unit of aggregate compute power by some
measure), but what if it costs ten times as much in human labor to build or
run? What if it uses more power or cooling? What if it needs more expensive
physical infrastructure of any sort?

These are all very valid concerns, especially in a shop with limited human
resources or with little linux expertise or limited space, cooling, power. Building
a cluster with four nodes, eight nodes, perhaps even sixteen nodes can often
be done so cheaply that it seems “free” because the opportunity cost for the
resources required are so minimal and the benefits so much greater than the
costs. Building a cluster of 256 nodes without thinking hard about cost issues,
infrastructure, and cost-benefit analysis is very likely to have a very sad outcome,
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the least of which is that the person responsible will likely lose their job.
If that person (who will be responsible) is you, then by all means read

on. I cannot guarantee that the following sections will keep you out of the
unemployment line, but I’ll do my best.

11.1 Physical Infrastructure

OK, so you’ve worked your way through the first umpty-chapters of this
book (and possibly the Sterling, Salmon, Becker and Savarese book, and the
HOWTO’s, and the FAQ) and have picked a beowulf architecture. You’ve prob-
ably priced it out, as well, as cost-benefit was undoubtedly an important part
of your selection criteria. You are probably almost ready to order the parts...

First, however, there are a few things you might not have thought about yet
that you definitely need to consider1. Let’s arrange them in a bulleted checklist
(to see what they all are) and then we’ll briefly discuss each one.

• Where are you going to put it? Is there enough space/volume? Is it
convenient to the expected users of the system(s)?

• Is the floor of your space strong enough to support the weight of all that
iron (no kidding!)?

• How are you going to provide power to all the nodes and switches and so
forth2?

• How are you going to remove all that power when is released in the form
of heat during operation? Is there enough air conditioning?

• Are there other infrastructure requirements? Do you need to run addi-
tional network lines into the space? A phone line? A thermal kill switch?

• Do you need any additional security measures for the space?

• Don’t forget about physical network support, as in cable trays, places to
run wire neatly, connections to any requisite LAN or WAN.

• What about a handy place to work on nodes? They won’t run forever;
you’ll be in there fixing them.

• How are you going to pay for the recurring costs of running the nodes,
and the amortized costs for renovating or “renting” the space it requires
so that it has enough power, cooling, strong floors, security, network trays,
workbench and tools and so forth?

1And I don’t mean what beowulfish name you’re going to give your beowulf when you’re
done, although that is certainly important.

2Before you even start to think about this in detail, I’d strongly recommend a trip to
http://www.faqs.org/faqs/electrical-wiring/part1/ to learn a little bit about electricity and
how it is distributed. I cover some of it in summary below, but you should take this subject
fairly seriously.
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“Hmmm,” you say. “Spent so long thinking about the programs and the
node hardware that I forgot about the physical requirements of all those nodes.”
I thought so. Let’s take them in order.

11.1.1 Location, location, location

What constitutes a suitable location for a beowulf varies wildly, as one might
expect given that beowulf designs vary wildly. You might be getting only eight
nodes in mid-size towers, or you might be getting 128 nodes in racks. You could
be getting eight nodes in a rack or 128 nodes in mid-size towers. You could be
getting lots of nodes in both racks and towers. You could even be building a
“blade” style beowulf with 32 nodes inside a single chassis mounted in a rack
(times as many chassis as you like).

God knows, you could even build a beowulf by buying motherboards with
CPU and memory, adding NICs, and hand-mounting them in e.g. an ordinary
filing cabinet (fitted with a power supply, some cooling fans, and some spacers).
With rack (and case) prices being what they are, I’ve come dangerously close to
building a beowulf exactly this way at home and (as PXE/bootp NICs become
ever more commonplace) I may yet do it. It would actually be kind of fun...

To some extent, what you want to get depends on the available space. If you
only have a broom closet to fit the cluster in, your choices for a large number
of nodes are highly limited to racks (presuming your closet has LOTS of air
conditioning and electricity) or maybe rack cases full of relatively low-heat-
producing single board computers. If your cluster is going to sit in a lovely
gymnasium-sized raised-floor cluster facility with hot electricity and cold air
delivered anywhere you like, you’ve probably got the money for racks but can
obviously use anything you want.

In addition, you might be building the beowulfish cluster just for yourself,
and want it in or near your primary workspace. Or you might be building it
for a group of users and need it accessible to the group. Or it might even be a
“public” facility and need to be accessible to several groups.

Even noise can be a factor. Our cluster room, between the 3-meter-cubed
heat exchanger and blower in one end and several hundred CPUs (each with
their CPU fan and an associated power supply and case fan all running at the
same time) has roughly the noise level of a 747 taking off – on the outside of
the plane. Not quite painful, but it’s trying. One can hear it through a solid
wood door and concrete block walls fifty feet or more down the hall.

Your computer cluster will need a space that meets your own particular
constraints of accessibility, noise and security isolation, node design and denstity.
Let’s start with the simplest issues; how much space will it require?

Room for your Beowulf

Obviously, you need enough room. If you’re only talking about four to eight
nodes, you might well be able to build it in your office (presuming that your
office is no smaller than mine). In fact, my current home beowulf is “in my
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office” – four nodes under desks in various rooms of the house, plus my own
desk node and a small stack of “dedicated” nodes shelved next to the desk. I
could easily stack up six to eight mid towers next to my desk, and have enough
power and AC to service them (they live in recently renovated space that I
engineered for a small cluster). I probably couldn’t stack up sixteen, though,
for a variety of reasons.

If you are planning to stack more than two units high, you will likely want
shelves so that you don’t have to unbuild your whole stack to get to a single node
in the middle for service. My mini-mid towers are roughly 8x18x18 (inches), so
I need at least two feet of space from a wall (to allow for cords and stuff) 16
inches wide and around 36 high to build a four node stack. With open shelves,
I’d probably add two inches horizontally and four to six inches vertically to
make it easy to get nodes in and out and allow a bit of air to circulate around
the boxes.

A BIG shelved beowulf is most conveniently built well away from any wall,
so that you can walk right around it. That way you can easily get to the
back and do the cabling, can slide units in or out for service, and can keep air
flowing through the whole thing to keep it cool. The same is generally true for
rackmount beowulfs – even though the racks are often on wheels or casters, it’s
preferrable not to have to move them to get to either the front or the back.

Make sure that the floor of your space is in fact strong enough to support your
beowulf. A loaded PC case might weigh anything from 10 pounds to 40 pounds
(power supplies, especially, can be very heavy) and the shelving (if any) adds to
the weight. Stack up enough of them on a few square feet of an upstairs room of
a woodframe house and you can make the house quite unhappy. Remember, it’s
so embarrassing3 when all that hardware (and you) plunge down on your pets
and children in the living room in the event that you fundamentally overload
the structure – I personally just hate it when that happens.

Even in an office-type building, if you crank three fully loaded full-size racks
into a small office you can have a similar experience. Estimates published on
the beowulf list for the weight of a fully loaded rack (I asked!) can range
anywhere from 700 to perhaps 1500 pounds and even if nobody gets hurt when
it crashes through the floor it would be an expensive mistake. In a lot of cases,
organizations with a rackmount beowulf will also have a big UPS, which can
also weigh in close to a ton in a footprint similar to that of a rack (1600 pounds
on about 3 feet by 3 feet was reported on the list).

Another thing to remember is that you almost certainly want it to be twice
the size that you think you “need” it to be at first. You need room for the
physical nodes. You need room to walk around the physical nodes, attaching
wires, punching switches, and generally looking busy if the boss comes buy.
Assuming that you’re not the boss, of course. Room for a desk or table capable
of holding a monitor, an office chair, even a small workbench with a trusty
electric screwdriver, multimeter, portable flashlight, and some bins for screws
and whatnot is called for (and you should start scrounging for all of this stuff if

3You could just die from the humiliation.
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you don’t already have it handy). You need room to assemble and disassemble
nodes, room to sit and work on node software via a workstation sitting on the
desk, room to store various things. Finally, the robustness of your beowulf to
failures in cooling depend mightily on how big the room is – how much “thermal
ballast” does it provide. We’ll talk about this further below.

Once you’ve gotten the size and the strength of the space worked out, you
are by no means done. The next thing to work out is how to feed the beowulf
what it needs to live and how to remove its waste products4.

11.2 Power and Cooling for your Beowulf

Once you have located a space that is big enough and convenient to the admin-
istrators and/or users5 and that can hold all the systems you plan to put there
without overstressing the physical structure, it is time to think about electrical
power and air conditioning. You must think about the two together, because
the amount of one you require determines the amount of the other you require,
and you need a lot more of both than you think you do.

A rule of thumb to use in estimating your power requirements is to assume
perhaps 150 Watts per (Intel or AMD) node. This is only a rule of thumb - if you
get dual CPU nodes with all the memory they can hold and a big power supply
and add a big, fast disk and a CD ROM and four network cards and a video
card and an extra fan, you might need twice that. Certain alpha nodes tend
very power hungry. Basically, heat tends to rise at least roughly proportional
to clock, so as CPU clocks continue to increase, so will heat production. On
the other hand a “stripped” diskless node, running a relatively low-clock CPU,
might end up only drawing 50 or 60 Watts.

However, you are in for a big surprise. The numbers above are for RMS
average power consumption. If PC’s had a “power factor” close to unity, as do
(for example) electric incandescent lights, one could easily take those numbers
and figure out how many nodes can go onto a single 20 Amp, 120 Volt circuit.

It also wouldn’t matter much how the multiple circuits that feed a power
pole in a cluster room were wired. One could wire the poles with three phases
of a three phase Wye supply (described in more detail below) that shared a
common neutral. Everything would be safe, and easy, and would work reliably
for a long time.

Alas, modern switching power supplies have a power factor that isn’t too
close to 1. In addition, there are details of the way that they work that make
a huge difference in the number of systems you can safely plug into a single
circuit, the longevity of the nodes themslves, the safety of the supply power
lines, and more. For that reason, it is time for a fairly detailed excursion into
Your Friend, Electricity.

4No, beowulves are not alive. However, they come pretty close.
5You do care about the convenience of your users, don’t you?
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11.2.1 Your Friend, Electricity

Once again, if you are only planning on building a “small” beowulf (less than
or equal to 16 nodes) you don’t have to worry too much about power as most
homes and businesses have circuits that can provide 1500-2000 Watts (15-20
Amps at 120 Volts) without blowing a fuse or breaker. Obviously you should
check (thinking about other things, like a monitor and room lights, that might
also be on the circuit) but you are likely OK.

With any more nodes than this, you are likely to need multiple circuits. You
will also very likely need to have the room wired to obtain them, as (unless
it is already a computer equipment room or a ex-machine shop or something)
most rooms don’t have multiple circuits already installed – they can actually
be a bit dangerous in a home where somebody might mistakenly assume that
because the lamp went off when they switched off a breaker it means that the
next receptacle over is actually dead.

Anticipating that some of the folks who read this are expectant hobbyists
or amateurs when it comes to electrical engineering, it seems like a good idea
to learn a bit about electricity at this point. After all, electricity is one of those
areas where what you don’t know can kill you. Fairly easily, actually. Be Scared.

Let’s discuss How Electricity Gets Around6.
Electricity is typically delivered to your home or office as a 60 cycle per

second (Hertz or Hz) alternating voltage from a step-down transformer (from a
much higher voltage) outside the building. In general, it will come in as either
two-phase (home) or three-phase (Y,office) with each phase at 120 (rms) AC
volts above ground. By the time this 120 VAC gets to where it is going to be
used, it often has dropped to only 110 VAC because of the resistance of the
distribution wires, hence its generic name of 110 VAC.

To get a 110-120 VAC circuit, one connects a line with one of the phases
through a fuse or circuit breaker to the black wire of a standard cable. The
white wire is connected to a grounded stake or sometimes the plumbing. The
bare copper (ground) wire is also connected to the grounded stake, but should
never be used to deliberately carry current according to most electrical codes.

To get a 240 VAC circuit, one runs one 120 VAC phase on the red wire, and
the opposite phase (of a two phase supply) on the black wire of appropriate
cabling. Both are colored to indicate that either wire will provide 120 VAC
with respect to white (current carrying ground) or copper (safe ground) or with
respect to your delicate and easily damaged human body in contact with just
about anything connected to the ground. So don’t touch them if there is the
faintest chance that they are “hot”. Don’t touch the white current carrying wire
either – under certain circumstances it can carry enough voltage to kill you.

Kill you? Did I just say that? I did. Electricity is very dangerous and will
kill you in a heartbeat7. Electricity can also start fires very easily, and fires

6In the United States, anyway. Sorry, I know, you probably live in Europe or India or Korea
or South America, but I don’t know anything about electricity and electrical codes there and
hence couldn’t help you anyway. If a volunteer from the beowulf list sends me details about
other countries, I’ll certainly break this section up into subsections, one per contribution.

7By stopping your heart; not, as a general rule, by cooking your brain like a hot dog unless
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can also kill you dead. The best way to get your beowulf’s space wired is by a
certified professional who knows your local codes and is a lot less likely to come
up with something that produces a blast of sparks when the breaker is thrown.

If you have three phase (Y or Wye, which is fairly commonly provided to
businesses or industries but not common in homes) electricity, you can get a
“sort of” 240 volt circuit out of it by running between any two of the three
phases. The phase difference is only 120◦ instead of 180◦ so one ends up with
only 208 VAC or so between the wires. This is enough to run most 240 VAC
devices simply because the manufacturers aren’t fools and know that Y/Wye
supplies are fairly common. This is also true for a lot of computer equipment
that requires 240 VAC (like some racks or uninterruptible power supplies (UPS)
or some big-iron computers).

The thickness of the wires used to distribute the electricity and the length of
the run from the primary distribution panel dictate how much current you can
safely pull through a circuit. As a general rule (according to most local codes),
14 (for up to 15 amps) or 12 gauge wire (for up to 20 amps) is used in household
dwellings to move electricity up to 100 feet. 10 gauge carries up to 30 amps
(for e.g. air conditioners or the like). 8 gauge up to 40 amps. The smaller the
gauge, the thicker the wire, the more it can carry without getting too hot. To
go farther than 100 feet, one typically goes up a size (or more) of wire.

From this you can see that if you have a “large” beowulf, you will almost
certainly need multiple circuits in the room (typically 20 amps each) and in
many cases these circuits will have different phases. This means that if you
are foolish enough to connect a black wire from one circuit to the black wire of
another circuit, you could be basically shorting out 208-240 VAC. Amazingly
enough, this happens (sometimes inside racks or computers that have more than
one plug that manufacturers somehow assumed would always be plugged into
the same circuit) with predictably spectacular results. This is just one of many
reasons to have reliable fuses or circuit breakers in each and every line.

Once the electricity has made it to the room, there is no real difference
between installing a bunch of receptacles in the wall for each circuit or just
one or two and plugging power strips (with appropriately heavy gauge supply
wires) into them, and the latter is likely more scalable and convenient. Just
don’t overload the circuits themselves and avoid thin extension cords and the
like. Electricity “likes” to run over nice, fat wires and really hates it when it’s
squeezed down into a thin, scrawny wire. It responds by making those thin
wires hot, which wastes energy, drops the voltage at the appliance, and can be
dangerous.

You may want to think about uninterruptible power supplies (UPS) and
power conditioning. In my area, the power goes off fairly frequently for tiny
little times like ten seconds. This is just enough to cause all of your kitchen
clocks and coffee makers to reset, and is plenty long enough to hard-crash your
computer(s) as well, which is most annoying if you’ve been running a calculation

you are messing with really high voltage and current. 60 Hz turns out to be a bad frequency
because it interferes with the biological frequencies that keep your heart cranking along. Oops.
1000 Hz would have been a much safer choice.
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for a day or two (or longer!) and have to start over. Almost any kind of UPS
can keep a computer up through these short outages.

More expensive UPS can provide a degree of power conditioning and surge
protection, which is also useful when you have many nodes and want maximal
hardware reliability. Some of them also have other clever or desirable features,
like the ability to control them and cycle the power remotely via a serial port
connection or the like. This can sometimes save one a trip into the cluster in
the middle of the night or can allow you to reboot while on your ski vacation
in Europe, if that sort of thing is worth it to you (the bells and whistles aren’t
cheap).

So fine, you’ve got your space, it has room, the floor will hold all your systems
(and you and your desk and your stereo), you’ve got electricians running one 20
Amp circuit in for each 16 nodes (or thereabouts). There’s just one last major
problem to worry about. You’re delivering a lot of power to the room to run
all those machines. When they’re done with all that energy, they give it up
as heat. Every watt that goes in to your computer room has to come out in a
steady state.

Believe me here, I’m a physicist. Think of your 16 node beowulf as a 1600
watt space heater or 16 100 Watt light bulbs, and you won’t go far wrong. 1600
watts is the rate at which energy is being delivered into the room8. If you don’t
remove all that energy at the same rate, it will build up. As it builds up, the
room will get hotter and hotter until the temperature difference between the
inside of the room and the outside of the room is big enough to drive all the
heat out through the walls.

This may or may not happen before all your computers melt or catch on
fire and turn into an expensive little puddle of metal and epoxy. Or just break,
which is actually more likely but not as impressive. The former can happen,
though – as you may discover the hard way if you are foolish enough to put 128
nodes (or approximately 13,000 watts) into a small, closed room with no kind
of thermal kill switch and the air conditioning fails.

Once again, most rooms in most houses or office buildings can probably
handle as many as eight nodes with their existing air conditioning arrangements.
In my house, for example, my office gets a bit warm during the summer with
five nodes (two with monitors) for around 700 watts, plus a couple of lights (150
watts more) plus a couple of warm bodies (200 watts more). 1000 watts in a
10 foot square room with a door and the house air conditioning set in the low
seventies keeps the office temperature in the high seventies, but I can live with
that and so can my nodes.

Sixteen nodes, of course, would be intolerable unless I added a window air
conditioning unit (or unless I spread them out throughout the house). Once
again, you’ll have to work this out for however many nodes you plan to have,
but if you have more than a very few nodes you must work it out.

A useful True Fact is that air conditioning is usually bought in “tons”, but

8For the physics challenged, a watt is a joule per second. A joule is a unit of energy, like
a BTU or a calorie.
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any sane measurement of power being delivered to a room will be in watts
(or maybe kilowatts). So, MaryLou, what’s Ton? A ton of air conditioning
removes enough heat to melt a ton of ice at the melting point (0◦ C) in 24
hours. To calculate the power this represents is a pain in the butt, however
straightforward9 and the result is that one tone of air conditioning can remove
almost exactly 3500 watts continuously from a room.

So, in an ideal universe we could run perhaps 32 nodes per ton of available
air conditioning (to stay a bit on the safe side). A 128 node beowulf might need
four tons of air conditioning (depending on the actual power required by the
nodes, which may well vary). However, reality might well be less than ideal – if
your machine room is considerably cooler than its ambient surroundings, or has
a large sunny window, or has a lot of electric lights, you may not be far enough
on the safe side. Heat can flow in to the room from any of these sources and 1
square meter of sunny window can let a lot of heat into a room on a hot and
sunny day.

I’m tempted to expound on the additional power needed by all that air
conditioning, but that depends on the efficiency of your air conditioning unit
and the temperature of the outside air and all that. A reasonable estimate is
that you’ll have to buy a watt of air conditioning power for every three to five
watts of power consumed in your beowulf. Ahhh, physics. A wonderful thing.

Let me remind you one last time that if there is any chance at all that
your air conditioning can shut down while your computers are still operating
and they are not in a large room with plenty of circulation, you should think
seriously about some sort of thermal kill switch. Computer hardware breaks
or even catches on fire if it gets hot enough, and I can tell you from bitter
experience that the temperature in a smallish closed room (in an otherwise cool
building) will go up to well over 100◦ Farenheit in a remarkably short time if
there is more than a kilowatt being released inside with no ventilation or air
conditioning. The temperature inside the cases will be considerably higher, and
the temperature of the CPU and memory chips and hard drives higher still.

We’re now done with the serious stuff. I’ll wrap up this section by reminding
you to think about other kinds of infrastructure that you might want to provide
for your beowulf room if it is in some sort of organization; fiber or copper
lines to your organization LAN switch or router, for example, or connections
to printing facilities. A phone (or two) is often nice, possibly equipped with a
modem and terminal or network server if you plan on managing remotely (as in
from someplace network-inaccessible).

Finally, you may want to think about physically securing the location.
You’ve just built a pile of PC’s that (however cheap the nodes) is worth thou-
sands, possibly hundreds of thousands of dollars. It would be a shame if you

9Aha! You thought that I’d present the calculation here, didn’t you. Admit it. You’re
just being lazy, and I’m tempted to tell you to get out an envelope, but you probably don’t
remember the latent heat of fusion for water (333.5 kJ/kg) or the number of kilograms in
a pound (0.4535) or the number of seconds in a day (86400) and all that. So one ton of
air conditioning can remove 2000 × 0.4535 × 333.5/86, 400 = 3.501 kilowatts from a room
continuously
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came in after a weekend to discover that an entrepreneur with a pickup truck
had disassembled and made off with a large chunk of them.

I wish that I could say that this is very unlikely, but we’ve had comput-
ers stolen (including one high end beowulf node) from just outside our beowulf
room, which is itself located on a low-traffic hall inside a generally locked build-
ing with a carded lot. We’re likely going to move our beowulf room to new
digs on a NO traffic corridor that you have to have a building map to find. So
think about locks, traffic patterns, access both day and night, and don’t make
it too easy for an “entrepreneur” to make off with your hard-earned nodes and
support hardware.

The answer, fortunately, is that it is not difficult at all to build, and once
built and configured, it is extremely easy (and cheap!) to maintain. Linux (or
at least some sort of Unix) expertise is obviously very useful, but most linux
distributions fully support generic cluster computing “out of the box”. The most
difficult single things to master are how to implement a scalable installation
mechanism for your cluster (or LAN), and how to largely automate software
maintenance for your cluster (or LAN) so that you do work once, and it is
automatically applied to all the nodes (or workstations) you manage.

Why do I keep putting down nodes (or workstations)? Hmmm, good ques-
tion! I suppose the answer is that from one point of view a generic compute
cluster can be thought of as a LAN consisting of specialized workstations. In
particular, workstations with no X or GUI installed, that indeed might not even
have video and a keyboard installed at all, that are missing sound and games
and office tools and a whole lot of user applications, but that do have compil-
ers and other development tools, a wide range of application and development
libraries, specialized libraries and toolsets for supporting e.g. PVM or MPI
computations, and perhaps some specialized node monitoring daemons or batch
job management tools installed.

Nearly all of this could equally be installed on a workstation, and if you run
cluster nodes in your workstation LAN, you are very likely (and wise) to go
ahead and install all the cluster tools but perhaps the batch schedulers on your
workstations as well, so that the only difference between a workstation and a
cluster node is that most “desktop user” interactive/user interface components
are missing on the latter.

Note that this is not the strategy adopted by the “true beowulf” package
builders10, who install custom kernels and tools to make cluster nodes look like
“CPUS” in a big multiprocessor system with a unified PID space and transpar-
ent job distribution and management. In this latter approach, nodes are not

workstations, and you can’t “log into a node” any more than one can “log into
a CPU” on a MP system.

10Scyld, at http://www.scyld.com, is commercial, Clustermatic, at
http://www.clustermatic.org, is non-commercial. Both are open source; both are based
on Erik Hendriks “bproc” program. The Scyld solution comes with hot and cold running
commercial support, but costs money. The Clustermatic solution comes with the usual hot
and cold running support-by-other-users, and is “free”. Ya pays your money (or not) and
takes your choice...
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This suggests that it is time for a pretty fundamental split in the discus-
sion. All those who want to build a beowulfish cluster on top of their existing
LAN, integrated with and possibly even transparently including their desktop
workstations, creating nodes that are basically specialized, particularly simple

workstations (that one can log into to run jobs or do whatever you like, just as
one could a workstation) please move one full pace to the left. Unless, of course,
you happen to be sitting down, or moving to the left would cause you to fall off
of a tall building and die, can’t have that.

All the rest of you, who want none of this “workstation cluster” crap and
want to build a beowulf, pure and simple, similarly step to the right, if only
metaphorically. Wishy washy ones can stay where they are and read both of
the following sections to figure out which one they might be, or might become,
and how.

11.3 Building “Workstation”-like Nodes

Using the most advanced installation techniques available (and there are a num-
ber of distinct approaches one can take in all the different distributions) it is
possible to definitely automate node installation in Red Hat and Debian and
probably all the rest as well but I haven’t tried them or gotten explicit in-
structions from somebody who has. In addition, there are at least two distinct
“beowulf in a box” open source projects out there as of the instant I’m writing
this (one more “open” than the other, but both valuable).

This chapter is organized into three sections. The first one covers what you
need to do after you’ve more or less determined your beowulf architecture and
scale but before you actually purchase the components. The second one covers
the assembly of the components, and includes a few clever tricks and ideas that
have been contributed over the years on the linux list, as well as a few gotchas.
The third section covers how to take care of the beowulf once it is built and
running. It is pretty boring, as once it is properly installed linux is boringly
stable; most of the required maintenance is just standard Unix maintenance of
the server(s) (backing them up and so forth), fixing hardware if and as it breaks,
and possibly helping and educating users.

11.4 Building the Beowulf

This part is pretty easy, once you’ve prepared a home for it. Of course, this is
what Sterling, Salmon, Becker and Savarese wrote the whole book How to Build

a Beowulf to tell you to do, so maybe it isn’t that easy. I’m going to give you
the relatively short version here and refer you to the SSBS book (and or a linux
book) if you want still more detail.

Basically, you start by setting up all your nodes physically. This may be
stacking them up on the floor or on shelves or on a table. It might be assembling
a rack. It might be just uncrating a turnkey beowulf if you shop at Paralogic
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(www.plogic.com) or Alta Tech (www.altatech.com) or any of the other turnkey
beowulf makers.

Plug them in, cable them up (which means connect all the NICs to their
switch, generally, and you’re ready to install. At this point what you do depends
very much on how you configured the nodes, which in turn probably depends
on what you planned to do at this point.

Uhhh, say that again? Well, hopefully you READ this whole book before
ordering all your nodes, didn’t you? So when you made certain configuration
decisions you did so knowing what you planned to do when you got here. So all
I have to do now is tell you what those decisions might have been and what to
do if they were, or something like that. I’m confused myself by this point.

Let’s do this by going from the easiest but most expensive and perhaps
most time consuming to the cheapest but most difficult ways of managing an
installation.

The easiest, of course, is to buy a turnkey beowulf from one of the afore-
mentioned vendors (or one from the lists given in the appendices; I’m not on
the take of Alta Tech, although in the spirit of full disclosure I have to say that
Doug Eadline of Paralogic did indeed give my kids Extreme Machines tee shirts
last year at Linux Expo). If you did this, I rather imagine you plug it in and
turn it on and go about setting up accounts and all that. In any event, if you
did this you don’t need my help as you likely bought help (support) along with
your beowulf.

11.4.1 Expensive but Simple

If you are a real neophyte in all senses of the word (a linux neophyte, a parallel
computing neophyte, a beowulf neophyte, a network manager neophyte) and
need to pretty much learn everything as you go along, you’re going to want to
either stick to the following recipe. If you did your work very carefully and
know that you really need to build one of the cheaper designs discussed next,
you should still build yourself a very small beowulf (perhaps four nodes) out of
either systems and parts at hand or systems you plan to recycle into stripped
nodes or server nodes according to this plan just to learn what you’re doing.

That is, the following design isn’t really very cost-beneficial as you buy some
things your nodes don’t really need and do a lot of work by hand, but it is still
reasonable for small beowulfs or while you’re learning. From what you learn
you can understand how to implement the next design that scales a lot better
in all ways.

This design has you install and configure each node basically by hand using
the standard installation tools that come with whatever linux distribution you
selected to use. You then put the nodes onto the chosen network(s) and configure
them for parallel operation.

The other place where this design works as a prototype is if you are setting
up a beowulf-style cluster that isn’t really a true beowulf. In that case you’d
actually configure each node to be a fully functioning standalone workstation,
setting up X and sound and all that, and providing each node with a monitor and
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keyboard and room on a table or desk. You’d still install most of the “beowulf”
software – PVM, MPI, MOSIX and so forth, and you’d still configure it for
parallel operation.

In this “hand crafted beowulf” design, your nodes have to be configured
to install independently. These days, that means that they probably need the
following hardware:

• A floppy drive.

• A cheap, small (4 GB is small these days) IDE hard drive.

• A CD-Rom drive

• A generic SVGA card (I usually get $30 S3-Virge cards)

plus of course your NIC(s). Each node is then attached to your choice of the
following:

• A KVM (Keyboard, Video, Mouse) switch, which in turn is connected to
a single keyboard, monitor and mouse. KVM switches are available that
are cheap (but fuzz a high resolution monitor a bit and don’t work for
PS/2 mice) or expensive (but keep the monitor clear and can manage all
kinds of mice). The latter can be purchased to support all the way up to
some 64 nodes, although they might add almost as much to the marginal
cost of your nodes as a monitor, keyboard and mouse for each.

• A monitor, keyboard and mouse for each. That is, you’re building a NOW
(network of workstations) or COW (cluster of workstations) as opposed
to building a ”true beowulf”. Big deal. It will still work like a beowulf for
anything but moderately fine grained synchronous parallel code and you
can use the workstations for all sorts of useful (but not particularly CPU
or network intensive) things while it is doing parallel computations.

• A moderately portable monitor, keyboard and mouse, perhaps on a cart.
You plug this into the nodes only one at a time of course, installing one,
then the next one, then the next and so on.

• One of several moderately expensive specialty cards that let you use (e.g.)
a serial console for the original install. Expect to pay three or four times
the cost of a cheap SVGA card.

The installation procedure is then very simple. You plug your distribution
CD into the CD-Rom drive, the boot floppy into the floppy drive, (if necessary
attach the portable monitor and keyboard to the appropriate ports) and boot.
You will generally find yourself in your distribution’s standard install program.

From there, install a more or less standard linux according to the distribution
instructions. You probably have more than enough hard disk space to install
everything as it is hard to buy a disk nowadays with less than 4 gigabytes (which
is way plenty) so don’t waste too much time picking and choosing – if it looks
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like it might be useful install it, or just install “everything” if that is an option.
Be moderately careful to install all the nodes the same way as you really want
them to be as “identical” as possible.

Be sure to include general programming support (compilers, libraries, edi-
tors, debuggers, and documentation). Be sure to include the full kernel, includ-
ing sources and documentation (a lot of distributions won’t install the kernel
source unless you ask it to). Be sure to install all networking support, including
things like NFS server packages. Sure, a lot of these things will never be needed
on a node (at least if you do things correctly overall), but if they are ever needed
it will be a total pain in the rear to put them on later and space is cheap (your
time later is expensive).

Be sure to install enough swap space to handle the node’s memory if you can
possibly spare the disk. A rule of thumb to follow might be to install 1-2x main
memory. Again, if you are sensible (and read the chapter on the utter evil of
swapping) you will avoid running the nodes so that they swap. However, in the
real world memory leaks (MPI is legendary for leaking in real live beowulfs!),
Joe runs his job at the same time as Mary without telling her, a forking daemon
goes forking nuts and spawns a few thousand instances of itself, netscape goes
berserk on a NOW workstation, and you’d just LOVE to have a tiny bit of slack
to try to kill off the offending processes without wasting Mary’s two week run.
A system without swap that runs out of memory generally dies a ghastly death
soon thereafter. It’s one of the few ways to crash even linux. Be warned.

Finally, install your beowulf specific software off of a homemade CD or the
net (when the network is up) or perhaps the CD that came with this book (if
a CD came with this book). If you installed a distribution that uses RPM’s
(like Red Hat, SuSE, Caldera) this should be straightforward. Debian users
will firebomb my house if I don’t extend this to Debian packages as well, so I
will. At this point in my life, I’d tend to avoid Slackware although we were very
happy together for years. Good packaging systems scale well to lots of nodes,
and scalability is key to manageability.

With all the software installed, it is time to do the system configuration. Here
I cannot possibly walk you through a full course in linux systems management,
and most of what you do is common to all linux or unix systems, things like
installing a root password (you probably did this during the install, actually,
and hopefully picked the same password for all nodes), setting up the network,
setting up security and network services, setting up NFS mounts, and so forth.
To learn how to do all this, you can use the documentation that came with your
distribution or head on down to Barnes and Noble (or over to amazon.com) and
get a few books on the subject. Be warned that the “administration tools” that
come with most linux distributions suck wildly in so many ways11 so even if you

11Let’s see, they are slow, they are broken and don’t work, they are clumsy, they require that
you have graphical interface (the X console) working, they are broken and don’t work, they
are security risks, they prevent you from ever learning proper scalable systems management
techniques for a beowulf, they are broken and they don’t work right where you damn well
need them to, they are utterly different on different distributions and hence what you learn
isn’t portable at all. . .Did I mention that they are often broken and don’t always work?
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use them to get started you need to learn how to do things by hand.

There are a few things you need to do a bit differently than the out-of-the-
box configuration, and I’ll focus on just these.

• Be sure that the latest version of the openssh package is installed on all the
nodes12. Keep this revision up to date as aggressively as you can manage,
as there are occasional security holes found in ssh and you want to be sure
you are working with the latest patched release. The latest releases of
ssh are also much easier to debug when something goes wrong with your
setup.

• When you set up networking on a “true beowulf” node (one that is isolated
from the main network of your organization by some sort of gateway node),
use an IP number for a private internal network. Private internal networks
are described in an RFC (if you know what that is or care). They are
also described in the HOWTO on IP-Masquerading. I personally like the
192.168.x.x addresses, but you can also use the 10.x.x.x addresses (if you
want to be lavish) or the 176.[16-31].x.x, which I can never remember.
Remember not to assign the 0 address or the 255 address to nodes – that
is, use only something like 192.168.1.[1-254] as a range. 0 and 255 are
“special” addresses and can break things if used.

• Set up a common /etc/hosts or some sort of nameservice. There are good
things and bad things about using NIS to manage system databases like
this. It is likely that the bad outweighs the good – NIS can significantly
increase the overhead of certain kinds of network traffic and network traffic
is the last thing that you want to slow down in a beowulf. On a “true
beowulf” most people tend to use a tool like rsync or an scp script to
distribute identical copies of /etc/passwd, /etc/group, /etc/hosts, and
so forth. However, in a NOW-type cluster with lots of users (and not
particularly fine grained parallel code) NIS is a reasonable enough solution.

When you are done and have rebooted the node, it should come up accessible
(via ssh) over the network. Once you can login as root over the net (test this)
you can move or switch the monitor and keyboard to the next node.

With all of this established, and with ssh set up to permit root access to the
nodes from the head node without a password, it is time to distribute common
copies of things like /etc/hosts, /etc/hosts.[allow,deny], /etc/passwd, and your
preferred /root home directory (I tend to like to customize mine in various ways
and miss the customizations when they aren’t there).

12Many beowulfers would disagree that ssh is necessary on the nodes, as they are typically
on a private network behind a system that functions as a de facto firewall (all of which is
true). Tough, they’re wrong and I’m right. They can write their own book. Even on strictly
functional grounds, rsh sucks (in addition to being, as Mr. Protocol poetically put it in
Sun Expert 11.3, a “rampaging security hole masquerading as a convenient remote command
execution facility”). It needs to die, die, die and it won’t as long as there are still pitiful fools
who still use it.



126 CHAPTER 6. BUILDING AND MAINTAINING A BEOWULF

To do this, one can use something like rsync (with the underlying shell set
to ssh, of course) or just an scp. Either way, you will find it very useful to have
a set of scripts on the head node that permit commands to be executed on all
nodes (one at a time, in order) or files copied to all nodes (one after another,
in order). Some simple scripts for doing this sort of thing are in the Software
appendix (and available on the web, since I doubt that you want to type them
in).

I’d strongly recommend that you arrange for all nodes to do all their logging
on your head node to make it as easy as possible to monitor the nodes and to
make it as easy as possible to reinstall or upgrade the nodes. If all they contain
is a distribution plus some simple post-install configuration files, you don’t need
to back them up as reinstalling them according to your recipe will generally be
faster. This is a good reason to set things up so that the nodes provide at most
scratch space on disk for running calculations with the full understanding that
this space is volatile and will go away if a node dies.

When you are finished with this general configuration, one should have a
head node (mywulf outside and bhead inside) that is also an NFS server ex-
porting home directory space and project space to all the nodes. You should
have a common password file (and possibly /etc/shadow file) on all the nodes
containing all your expected users. You should have ssh set up so all your users
(and root) can transparently execute ssh commands on all nodes from the head
node or each other (root might only work from the head node). That is, “ssh
b12 ls /” should show you the contents of the root directory without a password.
You should have PVM and MPI (and possibly other things like MOSIX or a
queuing system) installed on all nodes (probably via an NFS mount – there is
little reason to maintain N copies of the binary installation, although with RPM
or a decent package manager there isn’t too much reason not to).

PVM or MPI should be configured so that they are can utilize all the nodes.
How to do this is beyond the scope of this book – there are lots of nice refer-
ences on both of them and one can usually succeed even if one only follows the
instructions provided with both of them. With PVM, for example, you’ll have
to tell it to use ssh instead of rsh and decide whether you want to run pvmd as
root (with a preconfigured virtual machine) or let users build their own virtual
machine for any given calculation, which in turn may depend on who your users
are and what sort of usage policy you have. Similar decisions are required for
MPI. It is a very good idea to run a few of the test examples that are provided
with PVM and MPI to verify that your beowulf is functioning.

From this point on, you can declare your beowulf open for business. Your
work is probably not done, as I’ve only described a very minimalist beginning,
but from this beginning you can learn and add bells and whistles as you need
them.

This approach, as we’ve seen, more or less builds your beowulf nodes by
hand. This teaches you the most about how to build them and configure them,
but it doesn’t scale too well. It might take you as long as half a day to install
a new node using the approach above, even after you you have mastered it (the
first few nodes might take you days or weeks to get “just right”). There has to
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be a better way.

Of course there is. There are several, and I’ll proceed to cover at least two.
The next example will be a bit Red Hat-centric in my description. This is not

to endorse Red Hat over any other linux but simply because I’m most familiar
with Red Hat and too lazy to experiment with alternatives (at least to the point
of becoming moderately “expert”). It is certain that a very similar solution is
possible with other distributions, if you take the time to figure out how to make
it work.

11.4.2 Cheap, Scalable, and Robust

The best13 way to build your beowulf nodes (as opposed to the easiest) will be to
learn some things that enable you to improve the scalability of your installation.
What exactly does that mean?

If you followed my advice (assuming you are new to all this) and built a
small beowulf by hand-installing and configuring a few nodes, you probably
noticed that you did a lot of things over and over again. You configure the
disk. You pick the packages. You install the root password. You (possibly)
set up the video, mouse, serial port, printer(s) and all that. You configure the
network. You come along afterwards and copy the same set of /etc files from
your master copy of them on your server. You also unpack the same set of
beowulfish add-ons, and configure them the same way.

With all that repetitive work (and a computer handy, for God’s sake!) one
expects there to be a better way and of course there is. What one needs is a
way of encapsulating all of those actions that were the same over and over again
into a script (possibly with some variables) to do it for you.

If you are a Unix or linux expert, you’re shaking your head and saying, “Well
Duh...”. On the other hand, if you are coming out of the Windoze or Macintoad
world, you probably think that a script is the thing used to put on a play or a
movie14.

So it is, my friends, so it is, but the particular play we wish to put on is one
where the computer itself is the actor while it “installs itself” according to our
specifications!

Fortunately, linux comes with marvelously powerful scripting languages (like
/bin/[ba]sh15, perl and python16, and still others that are arcane or archaic,
depending on one’s religious convictions and history.

13Oooo, fighting words on any linux list. So let me be specific to try to avoid stimulating
a supernova in my neighborhood. This is an introductory book, right? So I mean the best
way for relatively unskilled people to achieve a soundly designed, clearly scalable, simply
manageable, and robust beowulfish cluster. If you know enough to argue with the word
“best”, relax. It isn’t intended for you anyway. Best is relative.

14Although if I called it a “batch job”, those of you who started with DOS 1.0 or 1.1 – like
me, actually – would immediately recognize it.

15Stop smirking. One can do “anything” with a Bourne shell script, at least if one is willing
to work hard enough. Well, almost.

16Stop fighting, you two! Put down that toolkit! I mean it!
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Unfortunately, all the different linux distributions are, well, different. And
the one place they are most annoyingly different is in how they lay out certain
key files that one most certainly will need to configure, and in how they actually
install themselves onto a system in the first place.

These differences are not insurmountable, but they make a truly proper and
portable scriptset for installing a beowulf node a childish fantasy. Your odds
are better of winning the Publisher’s Clearing House Sweepstakes, or of being
brained by a small meteorite as you step out your front door17 than they are of
writing something that works on any three of the available linux distributions.
Alas, beowulf install scripts for distributions exist, but they tend to be crafted
as one-of-a-kinds and therefore also tend to break even for that distribution
when, for example, it goes up a major revision number.

Fortunately (we just did unfortunately, right, so we’re back to fortunately)
it isn’t that hard to come up with a decent install paradigm that works with
the strengths and overcomes the weaknesses of any given distribution, once you
know what you are doing and now you do. To show you roughly how to proceed,
I’m going to outline what I do that exploits the nice scripting features of Red
Hat’s kickstart install. Near-equivalent approaches can be constructed for most
of the other distributions as well, where you have to do more or less of the
configuration work yourself with external scripts.

On major advantage of the Red Hat kickstart approach is that one does not

need (or want) a CD-ROM drive in a node in this approach – a floppy and hard
disk suffice. One may not need a graphics adapter, although even a host bios
that permits one to boot without one usually has to be booted with one first to
set the bios to boot without one18.

Now the point of kickstart is that Red Hat has encapsulated a large portion
of the configuration tree that you followed setting up nodes by hand into a
single file, where it effectively defines a “script” to be used by Red Hat’s Install
program. Using kickstart, one builds this configuration file that tells Red Hat’s
installation scripts how to build and configure a node, sets up an NFS exported
directory containing all required RPM’s, the kickstart configuration script, and
builds any scripts to run after the RPM phase of the install to (for example)
distribute /etc/passwd and the like.

A nice way to proceed (although not strictly necessary) is to set up the head
node (which should already be built and configured separately by hand) to be
a dhcp server. This server is configured to recognize the ethernet number of
each node as it boots and deliver to that node its IP number and all network
setup information and the instructions for getting to its kickstart file. Finally,
one builds a Red Hat kickstart boot floppy, which is basically a standard boot

17Amazing Facts: Yes Virginia, humans have on multiple occasions been struck by meteors.
On many of those occasions they have lived. Humans have (to the best of my knowledge)
never succeeded in writing a single script that would install Red Hat, SuSE, Caldera, Debian,
Slackware, TurboLinux (and the list goes on) in a beowulfish configuration. I rest my case.

18Meaning that one has to boot a host at least one time with an SVGA card and monitor
and keyboard attached, which is a pain that adds thirty minutes to each node install. It’s
your time, but I’d just buy the damn $30 card if I were you.
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floppy that times out into kickstart instead of an interactive install. Detailed
instructions for setting all of this up (with code and examples) are given in the
Software appendix and are available online at URL’s given therein.

When all goes well, a node install from the point where it is plugged in
and connected to the network (with no monitor or keyboard attached) looks
something like:

1. Boot the node with the kickstart floppy.

2. On the head node, note the (rejected) dhcp request. Create an entry in the
dhpcd configuration file for the host with the ethernet address observed
in the dhcp log. Restart dhpcd.

3. Reboot the node with the kickstart floppy (a hard boot is fine). Wait a
time long enough for the install to have definitely finished (typically 20-30
minutes). You can work on more nodes in parallel while waiting. With
a bit of practice, you can install a node every five to fifteen minutes with
three or four nodes always in the process of being installed at once.

4. Remove the kickstart floppy and hard boot the node.

If all has gone as it should, the node should come up fully installed, gifted with a
unique identity, and ready to accept ssh logins over the network. If you wrapped
enough of the post-install configuration up into scripts you may never have to

touch the host administratively again except for routine maintenance.

The advantages of this strategy are manifold.

• You can reinstall a node at any time by rebooting from the kickstart
floppy. If the node is not used to store data, you don’t need a backup at
all as it will be faster to reinstall completely than to mess with restoring
a backup. Time to reinstall is typically about twenty minutes.

• You can replace a node transparently by rebooting a replacement from
the kickstart floppy (either reusing the old NIC or making a new entry in
the dhpcd configuration table). Time to reinstall is still far less than an
hour, even if you have to move the card.

• All nodes are ”identical” and have precisely defined sets of binaries, li-
braries and applications. This is very good for scaling.

• Upgrades are no more complicated than an install. If you can upgrade
from RPM’s, this can be accomplished via a nightly cron script (drop
the RPM’s into a special NFS mounted directory and they’ll be on the
nodes by morning). If you are doing a full distribution upgrade, you just
reboot from the kickstart floppy once you’ve converted the node kickstart
configuration file for the new distribution. Upgrading a 32 node (or more)
beowulf can easily be accomplished in a day.
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• You save at least the cost of a CD-ROM drive (and a bit of power) per
node, the cost of maintaining node backups, and most of the human cost
of installing or managing a node.

As you can see, kickstart or kickstart-like automated script-driven installa-
tion tools in general permit one to build “a node” as a virtual description that
can be reused for all nodes. This scales excellently well and lets you work on
solving problems once with the assurance that your solution will appear uni-
formly on all nodes in due course. In managing networks in general but beowulfs
in particular, heterogeneity is evil. Try to ensure that all your nodes are bor-
ingly identical in hardware and are running a boringly identical software setup
as well. Every single thing you have to do “by hand” or on the basis of a node’s
particular identity is work that will become a hideous burden over time and
retard upgrades and so forth. Only your head node should be at all different.

Details of the kickstart approach

In order to use the approach above in the most automated fashion possible, one
would like to make a kickstart floppy, that is, one that runs kickstart by default
after a fairly short timeout. This is essential if you want to be able to (re)install
without a monitor or keyboard attached.

It is simple to do this in Red Hat. Use the following steps:

1. Copy the bootnet.img from the ./images directory of Red Hat distribution
you are using as your basic system to /tmp/bootnet.img

2. Mount this image via loopback. As root, a sequence like:

mkdir /mnt/loop

mount -o loop /tmp/bootnet.img /mnt/loop

should do it.

3. Edit /mnt/loop/syslinux.cfg. Change the default from ”linux” to ”ks” and
the timeout from 600 (or whatever it is) to as many tenths of a second as
you want to have to override the default if/when you might need to – I
like 50 (5 seconds) or 100 (10 seconds) but no more.

4. Umount /mnt/loop

5. Copy /tmp/bootnet.img (which should now be modified) onto as many
floppies as you like via:

dd if=/tmp/bootnet.img of=/dev/fd0 bs=1k

The floppies thus created SHOULD start up and display the usual
initial panel message (which you can also alter if you like by editing
/mnt/loop/boot.msg when the image is mounted but there is little point). After
a timeout of 5-10 seconds, they should boot into a kickstart install. If you have
dhcpd.conf records like:
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host b01 {

hardware ethernet 00:00:00:00:00:00;

fixed-address 192.168.1.1;

next-server install.my.domain;

filename "/export/install/linux/rh-7.1/ks/beowulf";

option domain-name "my.domain";

}

(where you have to fill in the ethernet address of EACH node in question, giving
each one its own unique node name and fixed address, probably in a private
internal network space as shown). The file pointed to is the kickstart file for the
node and should contain things like a url or other path to the distribution and
so forth. Some example kickstart files are given in an appendix.

There are still other games that can be played with kickstart and lilo working
together. For example, lilo can be passed a parameter that instructs it to boot
a running system directly into a kickstart reinstall. The last command of the
kickstart reinstall can reset lilo again to boot the system normally. Once your
systems are set up and running, you may never again need to boot from a floppy
to do a reinstallation. As long as your nodes remain ”clean” (are not used to
store real data that requires preservation or backup) they can be reinstalled in
any four or five minute interval of downtime to upgrade or repair with a simple
network command a routine script.

There is yet another, still more sophisticated approach to building nodes.
This one results in the cheapest possible nodes (which often means that you
can afford more of them). It is, however, in many ways the most difficult to get
working, and the resulting nodes are in some ways the least stable. For many
problems and budgets, though, it is worth the effort to figure it out and make
it all work.

What about other distributions?

Hmmm. A fairly obvious problem emerges. True, I can type like the wind itself,
fingers dancing on the keys with a life of their own, my interior monologue
spewing out with surprisingly little editorial revision to appear, as fully marked
up prose on the screen. True, my experience in Unix, cluster computing, linux
is great, my expertise is vast and almost boundless19. Amazing as it may be,
and to my great sorrow, I’m not an expert in everything – yet – and given that
(however fast) my typing in new stuff that I learn proceeds linearly with time,
while the amount of new stuff I need to learn and eventually type in increases
exponentially, I will almost certainly Never Catch Up. This is especially true
given that you who are reading these words almost certainly are doing so for

free, leaving me to manage mundane matters like feeding my children and paying
for beer on my own. All God’s chilluns gotta eat, and we gotta work at paying
enterprises to buy food.

19Stop that! Stop that laughing! You’re the one reading my book, after all...
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Consequently, I am in perpetual need of help. Not just psychiatric help,
either. Material help, in the form of material that can easily be included in this
book without my having to learn all about it and type it up. The following little
snippet is one of many such contributions, concerning tools that can be used in
other distributions to automate beowulf installation along the lines of kickstart
in Red Hat. To prove that I’m not a Red Hat bigot (or being paid off by their
board of directors, however attractive that would be and bribeable I might be)
please note: (from Thomas Lange ¡lange@informatik.Uni-Koeln.DE¿)

The other and more important note is on how to build a
beowulf. You only mention kickstart. Have a look at fai
(http://www.informatik.uni-koeln.de/fai/). It’s the fully automatic
installation tool for Debian. There’s also a chapter on how to build
a beowulf using fai at http://www.informatik.uni-koeln.de/fai/fai-
guide.html/ch-beowulf.html

I’m trying to keep track of the many references like this that have been
mentioned on the beowulf list or in private communications like this, but given
the busyness of my life (and the aforementioned fact that I basically make no
money from this book:-) it may be a while before I ever catch up on them all.
Like an infinite while. . .

In the meantime, fee free to fire stuff off to me that you think should be in
here somewhere, or to point out (as Thomas also did) that nobody uses ssh 1.x
any more and it is a security bugfarm so I should probably fix the text (written
years ago) where I advocate its use, or the equivalent. This field is a moving
target at best and this book perpetually obsolete here and there, and I need all
the help I can get adding new relevant material or targeting the old obsolete
material for stat revision.

11.4.3 Cheapest and Hardest: Diskless Nodes

Diskless nodes, you say? But, but, but, how do they boot? What do they run?
How do they work?

I’m glad you asked.
Actually, in all parts of the Unixoid computing universe but that part oc-

cupied by the Wintel-Macintoad industrial conspiracy20 diskless operation via
NFS has been a standard feature in widespread operation for longer than I’ve
been managing unixoid systems (some fifteen years, with some years of DOS
before that). Sun Microsystems, in particular, for years sold workstations de-

signed to operate as diskless computers. They didn’t have a disk. They didn’t
want a disk. They didn’t need a disk. And all of this was on a far older, far

20Actually, I’m joking, here, sort of, in case you were taking the word “‘conspiracy” too
seriously. Diskless operation requires a sophisticated operating system and seamless remote
disk services, and, well, who would “conspire” to keep their operating systems hopelessly
unsophisticated and incapable of real networking? It must be a cruel accident; nobody could
be that stupid.
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slower network than we enjoy today at a time that 16 megabytes was a lot of
memory.

Nowadays, with 100 megabit per second switched networks the minimal
beowulf standard (in most cases), 500+ bogomip servers, memory available at
less than $1 per megabyte, diskless configuration works, it works well, and it
saves you at least the cost of one hard disk per node, which is (these days)
approximately $100 per node, which (these days) might buy you six nodes for
the cost of five or better. Diskless nodes can make good economic sense.

The linux kernel is perfectly capable of diskless operation, and has been for
several major revisions now. There are only one or two things that make diskless
operation more difficult than it really should be, and it is these things that make
this the second best way to run a beowulf for most people (presuming that most
people reading this book are not, or at any rate are not yet, linux gurus).

One of these things is that (conspiracy or not) “personal computer” makers
(as opposed to “Unix workstation” makers like Sun and SGI) generally don’t
install BIOS’s that are capable of booting over a network device. This, in turn
is at least partly because the network device in a PC generally is made by a
third party and requires a driver that doesn’t live in the bios because of the lack
of a uniform network device API. This leaves one with a hideous chicken and
egg sort of problem. To get a device driver for the network card into a system,
one needs a disk. If one had it, one could boot diskless (and load a network
device driver without a disk).

Oops.
There are solutions to this, of course. One can get network cards that have

a BIOS that is aware of a diskless boot protocol developed to support diskless
boots in unix workstations that can bootstrap both the kernel and the required
device drivers with no disk at all. Some of the ways of obtaining the requisite
hardware will be indicated in the Hardware appendix. This, however, is a bit
tricky and there is a different way, I wouldn’t quite say a better way, that is
“directly” supported on a standard PC with over the counter parts.

That is to boot from a floppy drive (which is very cheap, generally costing
less than $20) and use a standard cheap network card, but skip the hard disk
altogether. Because this is the cheapest and most robust solution, this is the
one we will develop in detail below. Let’s start with the new and improved
hardware list:

• A floppy drive.

• A generic SVGA card (I usually get $30 S3-Virge cards)

• Your NIC’s

where again you may or may not be able to skip the SVGA card (depending on
how hard you want to work and whether you want independent access to the
nodes).

It is just about this moment of your life that you should pause and read the
Diskless Howto, which is reasonably current and does a far more detailed job of
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describing diskless operation than I’m going to give you here. I will just outline
the key elements:

• Build a boot floppy with the kernel and required network support for
your distribution. The floppy will likely be a lilo floppy, and will have a
whole little set of parameters that are to be passed to the kernel being
booted. These parameters tell the kernel who the system is supposed to
be (basically permitting it to configure its primary network interface) and
where it should look for its root directory.

• On the server, build a root directory for the node and export it to the
node. There is a huge range of ways to go about this. Some give every
node a very large independent root. Others share one root among all
nodes. Still others give each node a small independent root, but mount
the “big” directories (typically /usr and /home) from a common server
export.

• Develop a way of “cloning” the node files or directories on the server.
Again, there are some very clever ways of going about doing this, from the
simple but wasteful to the trancendentally clever and cheap but awesomely
complex.

Note that this approach gives you essentially all the scaling advantages that
the best method. You have a script titled something like “makenode” that you
run on the server. It either clones a root and modifies the requisite files inside or
clones the requisite files on a common root. It builds you a boot floppy, either
customized to the node or generic. You pop the boot floppy into the floppy
drive, power it up, and – Instant Node.

Not only that, but if a node goes down, a replacement can be brought up
by popping the aforementioned floppy into the floppy drive and booting. There
are also loads of Clever Trickstm that one can play – a system with a hard
drive running WinXX by day can be rebooted into a beowulf node by night by
popping in the floppy. A diskless WinXX node can be built (not that anyone
sane would ever want one) by installing a diskless linux node and running e.g.
VMware. To say there is no backup burden is an understatement – the nodes
have no disks to back up and the server either contains a single image (with a
handful of node specific files) to be backed up or a single image that is cloned to
make the nodes that must be backed up – the script can reconstruct the node
roots from this one image.

With all of this going for it, why is this method number two?
For two reasons. First of all, as you’ll discover when you attempt to set it

up, it is a bit tricky. You really need to know what you are doing to make
diskless operation work. I used a diskless boot to “bootstrap” a cloning install
to disk for our beowulf (back when I was still using slackware) and it took a lot
of work and learning for me to do, in spite of my having run Sun SLC’s and
ELC’s diskless for years. The Suns were easy in comparison, as they had boot
proms that knew how to boot diskless a priori.
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Second, your diskless system will probably have no swap, and will need a
lot of memory to ensure stable, fast operation. In fact, you’ll likely need to
spend most of what you saved on a hard disk on extra memory unless you were
already planning to build a node with a lot of memory (more than 128 MB,
say). I’d advise adding at least 64 MB more than you planned on just to hold
the operating system and your code. Linux is smart – it will use this extra
pad of memory for buffering and caching libraries and disk files and so forth
and greatly reduce the impact of mounting everything from NFS – and with
or without this if you ever exhaust physical memory your system will die the
aforementioned ugly death, probably right in the middle of your calculation.

Note that I do not advise turning extra memory into a ramdisk and going
through some arcane ritual to load it with a large root. Linux turns it into a
“ramdisk” for you, in all the senses that matter, and does a far more optimal
job than you are likely to be able to do, while also being able to use the memory
in other ways (like to avoid running out) in the event that an application needs

it for a short time.
This wraps up our general discussion of beowulf installation approaches, in

the order that you are likely to tackle them as a novice. Clearly there are lots of
things to learn, and the best way to learn them is by doing. I rather wish that
a lot of these were fully encapsulated in scripts and so forth for the novice, but
thus far this hasn’t happened. I make a stab at it in a few cases in the Software
Appendix, but in other cases we all await contributions.

This by no means exhausts our need for clever tricks or advice on how to
configure things. The next chapter is full of some (I hope) sound and sensible
advice on the best way to set up certain aspects of the networking and so forth.
First, however, we promised to address maintenance.

11.5 Beowulf Maintenance

In the preceding section we saw how our maintenance requirements can vary
considerably depending on how carefully we automated our installation and
how scalable (identical) our nodes are. If one sets the nodes up using either of
the last two methods, they basically should not need to be backed up at all21.
If one builds the nodes by hand, one probably will need to back them up.

The server node, of course, should be carefully backed up and indeed should
likely have backup storage attached to match the disk it serves. Any decent book
on linux or unix systems adminstration will tell you how to go about backing up
space and I won’t say any more of it. Once it is set up and automated, though,
all you ever do is change an occasional tape.

As is the case with any network of computers, you will need to take care
to monitor both systems messages (see suggestions below for centralizing this)
and things like system load, CPU temperature, available memory and so forth.

21I do find it useful to spin off copies of e.g. their ssh keys and perhaps their
/etc/X11/XF86Config (if any) to simplify a reinstallation, but this can be done just once
when the node is created.
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There are several very nice tools for the latter discussed in the Appendix on
software (with URL’s to download sites). If your beowulf or cluster is being
used by lots of groups, you may need to referee demands for resources. Finally,
you will likely have to teach some of these groups how to write parallel code for
beowulfs. Giving them this book (and a handful of others) is a good first step,
but of course there will be a need to do a bit more in some cases.

That’s really about it. The nodes are “instantly” replaceable or re-
installable, and as long as you protect and manage the head node like you
would any server or workstation, the whole thing should just tick right along.
Occasionally things will break in ways you don’t understand at all – running a
particular application will crash the system, or your network will fall apart.

That’s what the beowulf list is for. So my parting advice on maintenance
is to join this list at www.beowulf.org if you haven’t already. I’ll be there, and
so will a lot of people who know far more than I about beowulfery and linux in
general. Collectively, we know more than anybody! Chances are pretty good
that we can help, and if we can’t at least you’ll know that the problem you are
facing is real.

As you can see, beowulfs take a fair amount of work to plan. They take
less work (once you’ve learned what you’re doing) to build. Properly built,
they take almost no work at all to maintain. Fix or replace the hardware when
it breaks, upgrade the operating systems and tools periodically, maintain your
server node and that’s it. I don’t spend an hour a week on maintaining my
home beowulf, and on average spend little more on the one at Duke (mostly on
hardware maintenance, actually – Grrr).
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Tools and Tricks

There are lots of ways, as time passes, to reduce the time you need to spend
maintaining the cluster. Most of this one typically learns from experience, and
as time passes most systems administrators accumulate a sort of “toolbox” of
scripts or clever tricks that can be used to significantly reduce their work load
while making their network ever more stable. This way they look good to their
users while increasing the amount of time they have available to play Quake or
listen to music or write the next killer app.

I’ve been doing Unix systems administration and systems programming (in
addition to physics and all that) for way too long now (since 1985 or 1986 or
thereabouts). I have therefore accumulated my share of these tools and have
built up my own set of biases about the “right” way to do a lot of things. The
tools are far from static in time – some things that were “right” or “clever” ten
years ago are very wrong now. Also, from time to time I learn of something
really clever from other folks that I never would have thought of on my own (for
all my experience). Systems folks talk and share, which is a good thing as the
terrain upon which they play and work is amazingly complex and so there are
always things to be learned for the first time or relearned better.

This particular chapter is devoted to passing on a few little bits of systems
management wisdom, mostly beowulf specific ones. To an experienced admin-
istrator, some of them may seem obvious (or even wrong, as systems persons
don’t always agree about what is right). So take them with a grain of salt;
try them out, and if they suit you feel free to adopt them. A number of these
ideas actually have been discussed on the beowulf list, and I believe that what
I present in those cases is more or less the consensus view of the best way to
proceed, although as usual it is my fault if I have failed, not the list’s.

Let’s begin with something simple like the node naming and numbering
scheme. It is a general consensus that it is advisable to use a simple naming
and numbering scheme for your nodes. I tend to use things like b[1-N] (because I
tend to work with smallish N). A good solution is to have a hosts table something
like:

137
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127.0.0.1 localhost.localdomain localhost # Loopback
xxx.xxx.xxx.xxx mywulf.lan.dom.org # Outside address
192.168.1.1 bhead # Head node/server/gateway
192.168.1.101 b1 # First node
192.168.1.102 b2 # Second node
. . .

where I’ve assumed that this is a true beowulf with a head node (that doubles
as a server and a gateway) that lives both on your organization’s LAN (and
xxx.xxx.xxx.xxx is its first address on e.g. eth0) and on the private LAN for
the beowulf itself (the 192.168.1.1 “bhead” address on e.g. eth1). I’m also
presuming, possibly foolishly, that you know how to set up appropriate routes
for these two network addresses. There are HOWTO’s to help you out for all
this; use them.

A warning for the tyro’s: Do not use the “0” and “255” network addresses
for the most significant (rightmost) byte of an IP address. That is, only use
192.168.1.1 to 192.168.1.254 (at most) for host addresses in your internal LAN
(or on your organizational LAN, for that matter). The zero addresses for higher
bytes are ok to use (so 192.168.0.1 or 192.168.255.1 are OK), although I tend
to avoid the zero address(es) because then 1 is the first address (which makes
sense) and have never had so many hosts as to need the 255 address block.

The reason for this is that both 0 and 255 can function as broadcast addresses
and tend to always match (or fail to match) wildcard addresses. It is also
common enough to “reserve” certain blocks of addresses for particular functions.
For example Duke likes to put routers on the X.X.X.250 address of any given
subnet, so that it is always easy to guess how to set up routes on a new host.
They similarly put the campus nameservers on the X.X.250.[1,2...] addresses
so that nameservice can be configured easily. In many organizations X.X.X.1
is reserved for the primary server (and sometimes router) for a LAN. In the
example above, I effectively reserved 192.168.1.[101-254] for nodes and the lower
addresses for servers, head nodes, printers, or whatever.

The point is that a bit of thought and organization of your LAN IP space
now can make life relatively easy later, as if nothing else it will be much easier
to remember and implement consistently than mixing nodes, servers, printers,
routers into the IP tables in first come first serve order. If you ever need to
subnet your network (install routers between blocks of addresses) those address
blocks will need to have a common netmask, as well, which argues for assigning
blocks with boundaries that represent multiples of powers of two if you think
that there is any chance of your doing so in the future1.

If one wishes to have “vanity names” in addition to simple node names in
the case of a NOW-style cluster, one can add aliases to a more normal hosts
table:

1From this point of view, 101 is a foolish choice – I should start the beowulf at 192.168.1.128,
192.168.1.129, ... (for example) so that I can identify all “node” addresses by a mask on the
highest bit. True enough, but I don’t need to subnet and it’s certainly easier to guess the IP
number of b57 if one starts on 101.
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127.0.0.1 localhost.localdomain localhost # Loopback
xxx.xxx.xxx.xxx mywulf.lan.dom.org mywulf bhead # server address
xxx.xxx.xxx.yyy toady.lan.dom.org toady b1 # First node
xxx.xxx.xxx.zzz froggy.lan.dom.org froggy b2 # Second node
. . .

where mywulf, toady and froggy are all names of workstations (including a
“server” workstation, in the case of mywulf) that double as beowulf nodes with
names bhead, b1, b2 and so forth. In this case it is more difficult to “guess”
what the IP number of b2 is from its name (as zzz may not be sequential to
yyy) but one still identify nodes with a simple alias scheme.

If one has more than a few hundred nodes (lucky you!) then you’ll have to
extend this a bit and perhaps use a[1-100], b[1-100], c[1-100] on 192.168.1.[128-
227], 192.168.2.[128-227], 192.168.3.[128-227], and so forth (to facilitate building
netmasks, again). In this case to achieve anything like efficiency you’ll almost
certainly need a relatively complicated and expensive networking topology, high-
performance routers, expensive switches or the like. At least 192.168.x.x has
plenty of addresses to play with, though, (and 10.x.x.x even more!) so all of this
is workable for pretty much any scale one might reasonably be able to conceive
constructing a beowulf or cluster.

Now, why do we bother to arrange things like this, with a simple name
and mnemonic numbering scheme? For many reasons. For example, it is now
very simple to write a script to do all sorts of things on each node, one at a
time. Examples of scripts like this in /bin/sh and perl are given in the beowulf
software appendix. For another, one doesn’t have to remember that mywulf,
toady, froggy, and salamander are all beowulf hosts but that cobra, krait, mamba
and newt are not. One can also tell Sally to use b[1-10] for a calculation while
Tommy uses b[11-20], without having to tell Sally or Tommy just which hosts
(by name) those are.

This latter idea extends to both setting up virtual parallel supercomputers
within PVM or MPI or to configuring a cluster/LAN monitoring tool (one or
two of which are also included in the software appendix). It’s easy enough to
work with ranges of either name or address space, but difficult to work with
unique names and disconnected addresses.

If you’ve built a “true beowulf” with a real head node that functions as a
gateway, it is also probably sensible to set this head node up to do IP mas-
querading or forwarding for the nodes (which is very easy to do in 2.2.x and
higher kernels). Here is a place that some beowulf purists might easily disagree.
A true beowulf built with lightweight nodes, one can argue, is a place where one
“never” needs to login to a particular node at all, let alone access the outside
world from that node.

My reasoning here (which I will stand behind) is that Murphy’s Law makes
it inevitable that one day one will want or need to login to a node, and even to
login from one node to another node or to connect back to another workstation
or resource in the outer world. That’s why I recommend making the nodes “fat”
as far as resources are concerned. It takes negligibly longer to install a node
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with the kitchen sink in available applications and resources, especially if one
installs them in an NFS mount.

If one’s favorite editors, xterms, debuggers, perl, and all the rest are all
instantly available, the day you need them to cobble together some sort of
“emergency” script designed to save your bacon you won’t be trying to find some
way of getting them onto a partially broken system that could die any minute
and leave you with nothing. If you like, it makes hacking much easier, and any
long-term system administrator knows that hacking a short term solution to an
immediate problem may not be elegant but by damn it’s going to be necessary,
sooner or later. However, it also unleashes your creativity and capabilities
for elegant and clever solutions to certain problems – if you need to update
a particular directory tree on all your nodes, perhaps wget from a communal
website is actually easier than messing with rsync and permissions, but this
won’t help you if wget isn’t installed on the nodes and able to reach the external
website.

With all that said, in a true beowulf one would normally require users or the
administrator (you) to login to nodes either at the console (if there is a console
switch of some sort) or over the network after logging into the head node (or “a”
head node in cases where there is more than one) first. I can certainly imagine
needing or wanting to get to say, my desktop workstation from a node, though,
or even to a website as the wget example above suggests.

It is to facilitate this sort of thing that I made the installation of ssh a
“mandatory” part of at least my recipe for a beowulf. Inside an “isolated” true
beowulf (that might not “need” it for security) ssh manages forwarding of all
sorts of network connections far better than rsh.

For example, starting at your desktop console in your organization LAN, if
one ssh’s into the head and then ssh’s onto a node one can run X applications
on the node and have the display automatically be set and forwarded back to
your originating X console, which is rather awesome.

One can do even better. Both rsh and ssh have this nifty property that
they check the name by which they are invoked, and if it isn’t rsh (or ssh) it
presumes that one is trying to run rsh or ssh to the host with the name by which
the binary was invoked. The usual way to set this up is with a symbolic link,
and Sun in particular had a standard directory and script for building symlinks
for your organization so that rlogins or rsh’s to systems within the organization
could always be done just by the name of the machine.

Unfortunately, this hasn’t been widely adopted within the common linux
distributions, but the trick still works for both rsh and ssh (where we only
care about the latter). In the appendix is a perl script for building a hostname
symlink directory (historically, /usr/hosts) that contains, for example, a symlink
from /usr/bin/ssh to e.g. /usr/hosts/mywulf. If /usr/hosts is on your path,
then executing “mywulf” will log you into mywulf. Executing “mywulf xterm”
will start an xterm on mywulf that should pop up on your current X console.

This permits a number of fabulously clever tricks. Presuming that mywulf
has a similar /usr/hosts with symlinks for all the nodes, then executing “my-
wulf b1 xterm” on your desktop will crank up an xterm on b1 that displays
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on your current X console, forwarding through all the intermediate connections
transparently even if IP forwarding per se is off. The connection is even bidi-
rectionally encrypted in the event that you need to type any passwords into the
xterm. It is fairly simple to give b1’s root permission to execute root-based GUI
tools on your console, if you ever need to!

Another important thing to consider when setting up your beowulf is node
logging. I advise that your nodes do run syslogd – there is too much that can
happen that you’d want to know about. I’d also suggest that you do not log
at all to local files, e.g. /var/log/messages and so forth that are the default.
Log only over the network to your head node or a similar auxiliary node inside
or outside the network. That effectively eliminates the need to backup /var
on your nodes, and also significantly reduces the risk that a cracker can erase
their tracks, if you defend the logging node even more carefully than you defend
regular nodes or workstations.

This is by no means all of the clever tricks one can come up with for managing
or operating a beowulf. Browsing the beowulf list archives will turn up many
more. There is also a need for a lot more tricks to be contributed, as there is
evidence that a lot of the tricks are invented by three or four or ten different
people on the list independently, and sometimes one of those efforts is far better
than the rest. The beowulf list facilitates a genetic optimization process, but
this process works best when information flows in and out and can be compared
and sorted and recovered.
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Chapter 13

The Food Chain: Recycling
your Beowulf

One lovely thing about cluster computing, including beowulfery per se is that
there is a natural life cycle for cluster compute nodes. Let us meditate upon
this life cycle for a moment.

Your grant is approved, your company agrees: You can Build a Beowulf.
You collect quotes, select near-bleeding edge hardware, and put the whole thing
together. It works! You do all sorts of fabulous research, or invent a new drug,
or solve some critical problem, over the next two or three years.

Suddenly your once-new cluster looks pretty shabby. Ten percent or so of
the nodes have given up the ghost altogether and been cannibilized for parts
or been repaired at modest expense. Worse, Moore’s Law has continued its
inexorable march and it is getting hard to find nodes as slow and ill equipped

with memory as your are any more, even for a paltry $500 each.
What do you do?
Well, an obvious thing to do is to buy shiny new nodes from current tech-

nology, and replace your old cluster with a new one some eight times faster at
equivalent cost, but that leaves one with the problem of what to do with all the
old nodes.

Welcome to the food chain. As systems age out (in any LAN or cluster envi-
ronment) they gradually “lose value” compared to current technology, because

• Their reliability is diminished. Hardware failure starts costing adminis-
trative time and loss of productivity, especially if the cluster runs tightly
coupled code.

• Their warranties (even extended warranties) expire, so you have to start
paying out of pocket to fix them.

• Moore’s Law dictates that spending a mere $100 to fix a three year old
node is less cost-effective than using that $100 to pay for part of a (six to
eight times faster) replacement.
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• The overhead costs (power, cooling, space, networking, human manage-
ment) for nodes scale more strongly with the number of nodes than with
their speed and power. A 2.4 GHz Intel-based node might consume twice
the electricity of a 400 MHz Intel-based node (to take a current snapshot
that will of course require retranslation as these numbers advance) but
requires 1/6 the space, 1/3 the TOTAL power and cooling, and 1/6 the
management effort of the six 400 MHz nodes it might replace.

• Amdahl’s law (see chapter 4) usually favors faster nodes to get more work
done. One node at 2.4 GHz will generally complete work more than six
times faster than six 400 MHz nodes. At best the six nodes would be
equally fast, or nearly so.

Consideration of the above cruel facts may, in fact, convince you that it is
better to upgrade your cluster more often than every three years. A lot of folks
(myself included) try to arrange to upgrade their clusters once a year, with an
explicit line item in each year’s budget for a new set of nodes based on the
technology du jour, skimming along near the crest of Moore’s law instead of
being lifted up to the top of the wave every three years only to wipe out in the
troughs in between.

A totally dispassionate review of the Total Cost of Ownership (TCO) of the
nodes in an associated Cost-Benefit Analysis (CBA) might well dictate throwing

the nodes away every twelve to eighteen months rather than operating them until
they die of old age. After this period, new technology is typically roughly 2x
faster at equivalent cost, the overhead for operating the older nodes is 2x as
great (per unit of work done), and the human cost of waiting for (presumably
valuable) work to complete is often far greater than any of the hardware or
operational costs. I have seen Real Live CBA’s that prove this to be the case
in at least some environments.

However, the proof depends to some extent upon the assumptions made (to
include the infrastructure costs or not, to include the cost of the human time
spent waiting for results or not). Given a set of assumptions and an assignment
of costs and benefits, I can do no better than quote Dr. Josip Loncaric, a
venerable and respected beowulfer1:

Picking the best hardware replacement interval is an analytically
solvable problem. Assuming that performance per $ doubles ev-
ery N months, the most cost effective policy is to buy replacements
whenever you can get 4.92155 times the performance for the same
money. The Moore’s law says that N=18, so the best replacement
interval works out to be 3.44867 years. Using intervals of 3-4 years
is almost as good.

This is the general view – most people view three years plus to be the ideal
replacement cycle, and as Josip points out this is analytically justifiable. Note

1From private correspondance, June 5, 2001.
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that this does not mean that replacing your cluster every three years is ideal
– in general it will usually be better to replace 1/4-1/3 of your cluster (all
three year old machines) every year, not replace the whole thing every three
years. However, an equally good argument for a much shorter replacement
cycle has been sent to me by a very competent list person who accounts for
things like hardware reliability and so forth ignored by Josip. As always in
cluster engineering, your mileage may vary according to your particular needs
and cost/benefit landscape.

This still leaves one with the question of what to do with all the nodes one
accumulates as they gradually age out, whether they age out in one year or five.
The following are some very generic suggestions:

• Turn 1-3 year old nodes into desktops within your organization. Since
one often buys relatively advanced nodes, they are likely to be strong
enough to make good desktops (possibly enhanced with e.g. sound cards
and CD drives) even when they are too slow to be terribly productive on
your mail problem. This is the “food chain” – passing systems down in
the organization until they become worthless to even the least demanding
user.

• Create a hierarchy of clusters. Even older nodes can be useful for some
problems, e.g. embarrassingly parallel projects with infinite time require-
ments (like my own research, so I know that projects like this exist).
More or less unsupported, older nodes can often run for years doing useful
work, even if it isn’t your useful work. The downside of this is the power,
cooling, space and network infrastructure the nodes consume. It costs
roughly $100 in power and cooling per year per (presumed 100W) node at
$0.08/KW-hr. A $500 node will cost $500 more in power over a five year
lifetime. By the third or fourth year one reaches break-even on spending
the power money alone for six nodes on a single node with six times the
speed and less than six times the power requirement. However, in some
cases you pay for new nodes, while power and AC are “free” (paid for by
somebody else). Just one example of nonlinear cost profiles and how they
distort decision making...

• Donate older nodes to organizations that can use their remaining lifetime
profitably. For example, schools are often desperate for computers, and
a three year old node (with a bit of updating) may be far better than
what they have. Ditto for a number of non-profit entities. Schools may
even be happy to take an entire beowulf, intact, so that they can use it
to teach beowulfery! This is “like” passing it down the food chain within
your organization, only passing it down to a different and poorer chain
altogether. Sometimes realizing a tax deduction or other benefit in the
meantime.

• Eventually, a node becomes junk. As in, it isn’t worth plugging into a
wall by anybody, even somebody poor and compute-power deprived. Or
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it is broken, and not worth fixing. Nodes in this state need to really be
recyled, and not just thrown in a landfill.

Note well that computers contain a variety of toxic materiels. There is
typically mercury in the little battery that backs up the bios. There is arsenic
in the doped silicon in the IC wafers. There may be lead, cadmium and a
number of other heavy metals used in various sub-assemblies. Computers also
contain some valuable metals. There is gold on the contacts, for example, and
plenty of copper everywhere.

There are good sides and bad sides to all of this. Node “recycling” often
involves third world child labor and toxic materials (such as mercury) to ex-
tract the gold, and frequently ignores the rest of the toxic metals that build
up whereever they ultimately dispose of the parts once the gold is mined out
of it. We don’t have the technology to disassemble nodes into reusable micro
components, and even the reuseable macro components (such as the case and
power supply, the drives, and so forth) tend not to be reusable for more than
three to five years before they no longer work with current technology at all.

It doesn’t do any good to recycle nodes “properly” where properly means
sending them off to India to provide short term jobs and a toxic future for small
Indian children. However, dumping them in landfills here isn’t terribly wise
either. Perhaps the best approach is to recycle the mercury-laden components
(the battery) by hand, and landfill the rest, accepting that the arsenic and so
forth will eventually show up in the water table. I’d be happy to hear better
suggestions as this document reaches more people, and will cheerfully update
this chapter as better ideas emerge. rgb@phy.duke.edu, people.



Chapter 14

Beowulfs Made to Order:
Turnkey Vendors

As beowulfs have become more and more common, a number of companies
have emerged that provide either hardware specifically tailored for high-end
beowulf builders in universities or government labs or full turnkey “ready-to-
run” beowulfs that are delivered pre-configured to operate and work on the
problem(s) of the buyer’s choice when it is first turned on.

14.1 Guidelines for Turnkey Vendor Submis-
sions

If you are a turnkey vendor and are reading this chapter to see if you are there
yet, well, probably not (or you’d be in the table of contents). However, you
could be! Write a section describing your company and its offerings and send it
to me and I’ll consider adding it.

The document must be either plaintext or written as a latex
section{}. It should process out to strictly less or equal to three pages pro-
cessed pages total and should not be written as “advertising copy”. Rather it
should focus on your company’s technical strengths and what you can offer your
customers as added value – technical consulting, programming support, special
tools, great prices, whatever. No specific product prices permitted, but it is ok
to indicate the general price range your offerings occupy. Contact information
(e.g. a Web URI and a phone number) is strongly encouraged (that’s where you
can show or tell potential customers the detailed prices).

Figures or diagrams must at the moment be embedded postscript (EPS)
only. Eventually I’ll get set up to manage e.g. GIF inclusions for the web
version of the book, but I’m not yet.

I reserve the right to reject or editorially modify any submissions. If I want
to modify it, you of course will get a chance to accept my revisions before I
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actually publish it.
I am not selling space here, but I’m also not above accepting attempted

bribes in the form of vendor T shirts for my boys (current ages 5, 10 and 13).
I also am always open to donations of hardware – I like to try things before I
write about them, and the more complete my hardware collection is the better
I can compare and contrast the differences.



Part V

Beowulfs Everywhere
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Chapter 15

Beowulfs in Business
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Chapter 16

Beowulfs in Schools
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Chapter 17

Beowulfs in Government
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Chapter 18

Beowulfs in Developing
Countries

One of the beauties of beowulfery is that anybody can afford supercomputing
when the supercomputer is made out of off-the-shelf components. Over the
last several decades, supercomputers have generally been export-controlled by
the fully developed countries as a weapon. This has engendered a number of
“interesting” discussions on the beowulf list over the years.

The rationale for restricting supercomputers as a weapon has always been
that supercomputers can be used, in principle, to design a nuclear device and
to model explosions for different designs without the need to build an actual
device. The interesting thing is that this restriction was held from the early
1970’s through the end of the millenium. During that time, a “supercomputer”
went from a speed of a few million floating point operations per second through
billions to trillions. We have now reached the point where personal digital assis-
tants have the computing capacity and speed of the original restricted supercom-
puters. Computers such as the half-obsolete laptop on which I am writing this
execute a billion instructions per second and would have been highly restricted
technology a decade ago.

Add to this mix cluster computing methodologies that combine hundreds
to thousands of of GFLOPs into an aggregate power of teraflops, at a cost of
perhaps $0.50 per FLOP and (rapidly) falling. Any country on the planet can
now build a supercomputer out of commodity parts, for good or for ill, capable
of simulating a nuclear blast or doing anything else that one might wish to
restrict.

It is difficult to judge whether or not these concerns have ever had any real
validity. Of course, being a physicist, I never let a little thing like difficulty
stop me. In my own personal opinion, the export restrictions haven’t had the
slightest effect on the weapons design process in any country, nuclear or not.
Nuclear bombs have never been particularly difficult to design (remember that
they were originally built with early 1940’s technology!). The issue has generally
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not been how good a bomb one can design or modeling thermonuclear blasts,
but whether one can build one at all, even from a time-tested design. In a
nutshell, whether or not one could lay hands on plutonium or the appropriate
isotopes of uranium.

In the meantime, restricting exports of supercomputers to only those coun-
tries already in possession of nuclear bombs or capable of managing the diplo-
macy required to certify their use in specific companies and applications had a
huge, negative impact on the technological development of countries that didn’t

have nuclear bombs already or the right diplomatic or corporate pull. Engi-
neering disciplines of all sorts (not just nuclear engineering) rely on advanced
computing resources – aerospace engineering, chemical engineering, computer
engineering, mechanical engineering, all rely heavily on visualization, finite el-
ement analysis, simulation and other tasks in the general arena of high perfor-
mance computing.

Now, was this repeated extension of the definition of a “restricted supercom-
puter” really a matter of national security and bomb design, or was it (and is it
today) a way of perpetuating the control certain large industrial concerns had
over the computing resources upon which their competitive advantage is based?
A proper cynic might conclude that both are true to some degree, but restrict-
ing the development of nuclear bombs alone is hardly credible in a world where
we have increasing evidence that any country with the will and the plutonium
(such as North Korea, India, Pakistan, at the time of this writing) easily built

nuclear devices as soon as they had the plutonium, and only a lack of plutonium
and a war stopped Iraq.

In any event, this amusing little bit of political cynicism aside, the playing
field is now considerably leveled, and is unlikely to ever again become as uneven
as it has been for the last fifty years.

I have personally built a cluster supercomputer in my home that has between
eight and ten Intel and AMD CPUs in the range between (currently) 400 MHz
and around 2 GHz (that is, half the cluster is really semi-obsolete and none
of it is bleeding edge current). Together they easily cumulate to more than a
GFLOP, making it a “restricted armament” as of a few short years ago.

The total cost of all the systems involved is on the order of four or five
thousand dollars spent over five or six years. Spending five thousand dollars all
at once I could easily afford eight to ten 2.4 GHz CPUs and quite a few aggregate
GFLOPS (by whatever measure you choose to use), and this is chickenfeed spent
on a home beowulf.

Using even this resource in clever off-the-shelf ways, I’m confident that I
could do anything from design basic nuclear devices to model/simulate those
nuclear devices in action, with the biggest problem being the creation of the
software required from general sources and initializing it with the right data,
not any lack of power of the computers. All the components of this compute
cluster are readily available in any country in the world and are impossible to
restrict. Export restrictions may or may not be dead, but they are certainly
moot.

At this point any country in the world can afford beowulf-style supercom-



159

puting – a bunch of cheap CPUs strung together on a network switch as good
as one needs for the task or can afford. And nearly every country in the world
does build beowulfs. I’ve helped people on and off of the beowulf list seeking to
build clusters in India, Korea, Argentina, Brazil, Mexico and elsewhere. Some
of these clusters were associated with Universities. Others were being built by
hobbyists, or people associated with small businesses or research groups.

“Armed”1 with a cluster costing a few thousand dollars (and up), even a
small school in a relatively poor country can afford to teach high performance
computing – design, management, operation, programming – to prepare a fu-
ture generation of systems managers and engineers to support their country’s
technological infrastructure and growth! Those trained programmers and man-
agers, in turn, can run beowulf-style clusters in small businesses and for the first
time enable them to tackle designs and concepts limited only by their imagi-
nation and the quality of their programmers and scientists, not by a lack of
the raw FLOPS required for their imagination to become reality in a timely
and competitive way. Compute clusters can also nucleate other infrastructure
developments both public and private.

In the best Darwinian tradition, those companies that succeed in using these
new resources in clever and profitable ways will fund further growth and devel-
opment. Suddenly even quite small “start up” companies in any country in the
world have at least a snowball’s chance in hell of making the big time, at least if
their primary obstacle in the past has been access to high performance compute
resources.

In this country, I’ve watched beowulf-style compute clusters literally explode
in “popularity” (measured by the number of individuals and research groups
who use such a resource as a key component of their work). At Duke alone,
ten years ago I was just starting to use PVM and workstation networks as a
“supercomputer” upon which to do simulations in condensed matter physics.
Today there are so many compute clusters in operation or being built that the
administration is having trouble keeping track of the all and we’re developing
new models for cluster support at the institutional level. My own cluster re-
sources have gone from a handful of systems, some of which belong to other
people, to close to 100 CPUs, most of which I own, sharing a cluster facility in
our building with four other groups all doing cluster computations of different
sorts.

The same thing is happening on a global basis. The beowulf in particu-
lar and cluster computing in general are no longer in any sense rare – they
are becoming the standard and are gradually driving more traditional super-
computer designs into increasingly small markets with increasingly specialized
clients, characterized primary by the deep pockets necessary to own a “real”
supercomputer. In terms of price performance, though, the beowulf model is
unchallenged and likely to remain so.

Beowulfs in developing countries do encounter difficulties that we only rarely

1Sorry, with all of this talk of weapons design, which is likely to be the last thing on the
mind of most developing countries, I couldn’t resist the pun.
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see here. Unstable electrical grids, import restrictions and duties, a lack of local
infrastructure that we take for granted, theft, and graft, all make their local
efforts more difficult and more expensive than they should be, but even so they
remain far more affordable than the supercomputing alternatives and well within
the means of most universities or businesses that might need them. As is the
case here, the human cost of a supercomputing operation is very likely as large
or larger than the hardware or infrastructure cost, at least if the supercomputer
is a beowulf or other compute cluster.

Even with these difficulties, I expect the global explosion in COTS compute
clusters to continue. Based on my personal experiences, this book (in particular,
given that it is available online and free for personal use) is likely to help people
all over the world get started in supercomputing, nucleating new science, new
engineering, new development.

To those people, especially those in developing countries trying to overcome
their own special problems with funding, with environment, with people, all I
can say is welcome to beowulfery, my brothers and sisters! The journey will
prove, in the end, worthwhile. Please let me know if I can help in any way.



Chapter 19

Beowulfs at Home

This is a subject near and dear to my heart as I’ve had a beowulf at home for
several years now. Amazing as it may seem, it is now entirely possible to build
a beowulf-class cluster at home, and in fact there are some very useful reasons
to think about doing so.

It has become possible for several reasons:

• Computers have become almost unbelievably cheap. Very respectably
configured Intel or Athlon based computers are available for as little as
$750 (US) with a graphical head, Windows installed, and some useless
gingerbread. If you can get them to keep Windows and give you more
memory, a bigger disk, and perhaps a nicer monitor you can get a “head
node” (which doubles as a general purpose desktop) for under $1000.

• Compute nodes, which need be little more than a case with a processor,
some memory, and a network card (no, you don’t need even a floppy disk
if you have a PXE/bootp NIC) can cost as little as $500.

• Even a fast ethernet switch, which used to be quite costly, is now available
for as little as $100 for 8 ports (quite enough for a small beowulf).

• All the components (running Linux) can serve more than one purpose. In
my house, many nodes are also desktops. In this way I cover my wife
and kids’ desktops and also get to use their (mostly idle) CPUs over the
network. Obviously this won’t work with any systems running Windows,
unless it is within e.g. VMware.

The most difficult single thing about setting up a home beowulf with nodes
distributed in several rooms is likely to be the physical network. Houses that
are properly wired with category five cabling and RJ45 sockets in all the rooms
are relatively rare. However, this is compensated for by three things.

For one, wireless networks are now relatively cheap. A wireless access point
is less than $200, and a wireless card for a PC or laptop less than $100. Wireless
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bandwidth isn’t terribly exciting (I tend to get 2 Mbps unless I’m sitting on top
of the wireless access point with my laptop) so you won’t be able to run par-
ticularly fine grained code, but wireless is perfectly adequate for coarse grained
code and embarrassingly parallel applications.

For another, having your house wired for a network by professional elec-
tricians isn’t horribly expensive, either. Depending on how hard they have to
work, it should cost on the order of $100 per pull from a reasonable central
location (your “wiring closet” or wiring shelf, where you will locate your switch,
a small patch panel, and a cable and/or DSL phone line for external broadband
access) to various rooms. Most of this cost will be labor – it is only a little more
expensive to pull 2-4 cat 5 cables than it is to pull one.

Having four rooms wired (with perhap 12 ports, three per room) and a
terminating patch panel installed might cost around $500 or even less. It will
one day increase the value of your house, and in the meantime it will make your
life better in lots of ways. Go for it.

The final way to proceed is, in the best of beowulf traditions, to Do It
Yourself. The wiring, that is. This is remarkably simple, and cuts out all the
labor costs relative to a professional installation. The hardware costs are a few
hundred dollars for cabling and termination and tools, and you can install as
many lines as you need whereever you need them.

In my own house (what better testbed?) I have owned and operated a
beowulf for years now. I’ve even written it up in an article for ;login, complete
with pictures1. I used all three of these methods to network my house. I hired
professionals to wire our attic as we had it remodelled into a home office. I stuck
a wireless access point up there (and am working on my laptop in my living room
via wireless as I write these words). I pulled wires myself into all the downstairs
bedrooms, terminating them (and all the professionally installed wires) in an
RJ45 patch panel. I pulled a category five phone line from our phone service up
to the patch panel for DSL, and a cable up against the possibility that we might
one day use cable instead of DSL (or might want to watch TV on a computer,
as unlikely as that might seem).

I am therefore in a good position to tell you...

19.1 Everything You Wanted to Know about

Home Networking but were Afraid to Ask

I’m going to keep this fairly simple. Do Not Try This if you are clueless about
wires, electricity, following instructions, and using tools (including power tools).
I’m going to assume that you can operate a saber saw, a drill, electric screw-
driver, and so forth and hardly ever cut off an important limb or digit. I’m
going to further assume that you understand that electricity likes to run inside
conductors, hates to be shorted out, and (in higher voltages) would just love to

1;login, The Magazine for Usenix and SAGE, August 2001, vol. 26, number 5. This is
available online at: http://www.usenix.org/publications/login/ 2001-08/pdfs/brown.pdf
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plunge to ground through your delicate and easily electrofried anatomy. The
network wiring itself carries only trivial voltages and currents during normal
operation, but who knows what Evil lurks in the hearts of walls, especially the
walls of older houses? If you’re careless or unlucky, you can cut right through
household wiring while doing something as innocuous as cutting out a hole for
a circuit box in your wall.

Then there are your local laws and codes, which may or may not be happy
with rank amateurs installing their own wiring, even low voltage low current
wiring.

So, before we begin, permit me to say proceed at your own risk. It isn’t
going to be my fault if you burn down your house, electrocute yourself, lop off a
finger with a saw, or even follow all my instructions perfectly but end up with
a network you can’t quite get to operate. Tough. If you wish to avoid risk, pay
a professional.

There. Now we can proceed.
If you are still reading, I presume that you’re undaunted, ready to DIY,

maybe even a bit cocky about your mechanical abilities. Good. It really isn’t
that hard, nor is it that dangerous, but there are plenty of Complete Idiots out
there in the world who can manage to bollix anything up – and then sue you
for it, as if their stupidity or plain old bad luck was your fault.

To install your own wiring, you’ll need to begin with a trip to Home Depot,
or Lowes, or you own local favorite hardware and wiring mecca. A shopping list
of tools and parts you will need or find useful:

• A box or boxes of category 5e, data quality, unshielded twisted pair cable.
A box typically contains 1000’, often in your choice of garish colors (but
grey or white will do fine). A box typically costs somewhere in the $50-100
range. Don’t bother getting less than a full box – you’ll find it useful for
many things even if you only “need” 500’ to run all the wires in your plan.
You can donate any surplus to a local school or other charity.

• The usual range of tools for working with wire and walls – wire cutters,
needlenose pliers, screwdrivers in various sizes (including a rechargable
electric one if possible), a pocket knife, a rechargable drill, a rechargable
saber saw with plaster, wood, plastic, metal blades, a utility knife, tape
measure, level(s), hammer, and so on. If you are the DIY type, you
probably own most of this already, and are happy to have an excuse to
buy anything you are missing (“...but he SAID that I’d need a brand new
metal lathe, honey...”).

• A wire puller, at least 25’ and maybe longer depending on the length of
the runs you need to pull. This is basically a reel of retractible/extensible
spring steel with a little hook on the end. You poke it down walls and up
through floors, fasten wires onto the hook end, and “pull” them back. Also
known as a “fishtape” because one spends a lot of moderately frustrating
time “fishing” for holes, wires, passages through the mystery maze behind
the drywall, and so forth.
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• Some largish bits for your drill or brace-and-bit – 3/8”, 3/4”, 1”, 1 1
2” all

might be useful to make holes big enough for one or more cables.

• A crimping tool. I have one that crimps both RJ11 (phone) and RJ45
(phone/data) ends, and can make my own phone or data cables on de-
mand. Something to do with all the leftover wire.

• A cable tester. This is essential. An inexpensive cable tester typically
consists of two pieces – one with a battery in it that plugs directly into
one end of a connection, one with a bunch of little lights on it that plugs
into the other end. It basically switches the juice onto each pair in turn,
and if the pair is good, lights the little light for that pair. Without this
tool, you’ll never know if a failure is bad wire, bad wiring, a bad network
card, a bad software driver for the network card. Even with this tool
this may not be horribly clear, but you can at least eliminate the physical
network from the list of possible problems with a high degree of confidence.

• If you plan to use some of the cables for phone extensions, get a phone cir-
cuit/polarity tester. Otherwise you’ve got a 50getting the polarity wrong,
which probably won’t break anything but isn’t right. Probably being the
operative word...the phone company just hates it if you mess up a phone
circuit, and reversed polarity can be annoying if not dangerous.

• Circuit boxes to put in the walls. Here there are many very distinct choices
to be made. One usually uses the same size boxes that one would use for
e.g. 110V wall receptacles or wall switches. Such boxes can install between
straps or against a wall stud (in new construction), latched into a hole in
drywall (nifty little sideswing locks), snapped into a hole in drywall (spring
loaded locks, screwed or nailed into a stud through a hole in drywall, or
fastened/glued ONTO drywall from the outside (usually mated with cable
channels that are also glued onto the wall on the outside). Note that code
may also require conduits, separate grounds, supports inside walls, and
anything else that code wants, if you can figure this out in your locale and
care. Do Not Share a Box with Real Electricity In It.

• A variety of terminating devices. One can buy RJ45/data plugs or RJ11
phone plugs in bulk (boxes of 10, for example) or one at a time for about
twice as much. There are face plates with one hole for a data port, two
holes for data and (say) phone. There are plates with 3, 4, 6 and even
8 holes where you can install any combination you like of data, phone,
cable, and even wires for speakers. I generally recommend pulling at least
two data lines if you pull any at all, and three or four is better. A single
cat 5 line will support up to four phones lines (four twisted pairs)2, by the
way – you don’t need to buy or pull separate phone cables. If you wire the

2It may sound stupid for me to say this, but you can’t carry both phone and data at the
same time, so can’t use the leftover wires in the phone cable to carry anything but more
phones.
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plugs correctly, you can also plug a phone line (RJ11) into a data (RJ45)
socket and have it work (middle two pins). Consequently, you don’t really
need RJ11 sockets at all, even if you plan to use one of the lines for a
phone extension.

• You may or may not want a patch panel for the location where all the wires
are pulled to. If you’re only pulling a few wires (say eight or less), you
can maybe get by with 1-2 circuit boxes ganged together and 4-8 RJ45’s
installed in each. If you’re pulling more than eight, I’d recommend a patch
panel. There are a variety to choose from – rackmount, wall mount, shelf
mount – and they cost in the ballpark of $60 for 12 ports. Do not plan
to terminate the free ends of the wires with RJ45 plugs as this makes the
installation difficult to label and test and debug.

• A cheap cable stripping tool. These are things that look like clips or
clamps with an adjustable razor edge. The razor can be set so that you
can cut through the insulating jacket on cat 5 cable without nicking the
wires inside, which is a Very Good Thing to be able to do quickly.

This isn’t as bad as it sounds. A lot of this is the hardware you will install
(circuit boxes, plugs and faceplates, wire, patch panel). Some is tools you
probably already have. Aside from that, you need the crimper, the stripper, the
tester(s), and the puller (a total cost of maybe $120).

Next you need a plan. Central to the plan is your “wiring closet” – the place
you’re going to pull all the circuits back to. This location might be a closet,
a shelf, a cupboard, the garage, a big box (like a circuit box) in a wall. Air
conditioned space with an electrical receptacle handy is preferred as you’ll want
to locate the network switch there, maybe a wireless access point, maybe a DSL
modem or cable modem or a gateway there, and all of these need power and
generate heat.

It is nice to have a cable drop there (and to pull TV cable along with your
network wiring if you’re house doesn’t already have it). It is nice to have BOTH
a regular phone line AND a data phone line (if your service box, like mine, is
already equipped with a splitter and separate wiring points). You may or may
not need some degree of physical security there – at the very least keeping little
fingers out (if you have children) is a good idea, or you may just plain need to
lock up the equipment.

However, the essential feature of the space for home wiring is that you must

be able to pull cables into and out of the space. This means that you need to be
able to put a hole into the walls, the ceiling, the floor of this space and access
SOME route to whereever you plan to put a plug. In most houses this means
that the space will need to be in the top floor (where you can come down from
the attic) or the bottom floor (where you can come up from basement or crawl
space).

Some houses are nearly impossible to wire without removing a lot of drywall
or at least cutting lots of holes in drywall and then patching them closed when
you’re done. If you live in such a house, you’ll have to decide whether or not
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you want to mess with DIY wiring at all, as it won’t be easy or pretty and I’m
not going to cover drywall repair methodology herein so you’re mostly on your
own.

One solution for even this case that I will mention and that isn’t too horrible
is to use wiring channels and boxes that are glued or screwed onto the drywall
from the outside. This leaves one stuck drilling holes through walls here and
there to let cables through, but keeps one out of the drywall itself. Maybe if
you are a bachelor...

Once this place is located and routes you can pull to all terminal locations
established and put down on a plan, you pretty much just do it. Doing it
consists of:

1. Drill holes in the floor/ceiling/walls as necessary to get a wire from the
wiring closet...

2. fishtaped into the wall and...

3. up (down) into the attic (crawlspace)...

4. from where it is safely routed (in conduit, through holes in joists, stapled
to joists with cable staples) over to the room being wired...

5. and pulled down (up) into the wall of the room...

6. out into that room, through the circuit box, with your fishtape.

Leave a generous hank of cable on both ends. Pull more than one cable at
the same time to the same place whereever possible. You can’t have too many
cables – unused cables are spares, can serve as extra phone lines, and at worst
cost a few dollars in “wasted” cable and parts if unused. You can, however,
have too few cables, and pulling more cables to fix up some room when the rest
of the project is done will be a real pain, easily avoided by overwiring now.

Strip an inch or so of jacket from the cable in the room. Using the (usually
provided) punch tool, untwist and wire the ends precisely as indicated on the
RJ45 plug. You will often see two alternative wirings (each with its color scheme)
represented on the plugs. Use either one (A or B) but use the same one on all

plugs you wire, on both ends or you’ll make a big mess and nothing will work. I
generally use A.

The idea is that all the little one pins have to be wired to all the other little
one pins, two to two, and so forth. Mixing mixes up your signals and nothing
will work.

When all the wires to that location are so wired, snap the RJ45’s into the
face plates and wire the whole thing into the box (careully pushing surplus wire
up into the wall. Do the same thing on the wiring closet end, either terminating
the wire (using the same scheme!) in a punchblock or in an ordinary RJ45 in a
faceplate.

TEST THIS CIRCUIT now with your tester, and LABEL THIS CIRCUIT
at both ends. You need to know that plug 3a (your middle son’s room, top
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plug) is also plug 3a in your main patch panel and tested between those two
points.

The hardest part of this whole procedure is probably fishing for the wires
in the walls. Some walls are easy and you just drop in one hole and easily
find the other down below. Other walls are full of insulation, of fire blocking,
of other wires (dread electrical, phone, cable), of plumbing (DON’T mess with
plumbing) or you turn out to be between studs four and five up above while the
hole you cut in the drywall for the circuit box turns out to be between studes
five and six...

Be careful, work systematically, test often.

19.2 The Rest of the Story

Once the wiring is in place, the rest is easy. Install nodes/desktops whereever
you need them, hook them into the network (possibly using cables you made
yourself out of the leftover wire and a box full of RJ45 crimp-on plugs), install
linux including PVM and MPI and parallel tools and compilers, and have at it.

What can you do with it once you’ve built it? Well, for one thing, a home
beowulf usually has a reason to exist as components alone. Each machine usu-
ally “belongs” somewhere and does several things. What you do with it along
the lines of parallel computation depends on what you do and what you want
to get out of it. I use mine for code development, as a testbed for parallel ap-
plications and management tools, and to a lesser extent as a production unit
in my research. I don’t need a lot of nodes or fast nodes or matched nodes for
these purposes, but working at home frees my nodes at Duke for production and
keeps buggy code off of important machines until it is pretty well debugged.
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Chapter 20

Justifying a Beowulf

A sine qua non of beowulf engineering is paying for it. Few individuals buy
beowulfs “out of pocket” (I’m one of the admittedly rather strange exceptions
to this rule) and everybody else has to find the money for one. This money gen-
erally belongs to somebody else – the government, the university, the company
– and one has to either write a grant proposal or a some sort of justification for
the expenditure of money already in hand.

How can one justify purchasing a beowulf to people who in many cases
haven’t the foggiest of ideas about what a supercomputer is or how they work
or what one might want to accomplish with one? In a really ideal universe, one
would simply say “because without one I cannot get my work done and we all
agree that that work is worthwhile” and be done with it, but alas this is often
viewed as an unsatisfying answer by the administrative individuals charged with
ensuring that valuable money is well-spent.

The key step to justifying a beowulf purchase is the gentle education of those
individuals in charge of providing the money. These individuals are generally
not stupid – they are merely ignorant, and ignorance is easily curable. This
chapter is devoted to a rational but very simple explanation of the beowulf
concept suitable for cutting and pasting into purchase justifications or grant
proposals. It therefore departs somewhat from the wry or humorous tone of
previous chapters1.

Get out those figurative scissors, boys and girls. I’m writing the following
section in order to use it myself in a matter of moments, as I too (outside
of my autofunded home efforts) am a slave on the Wheel of Life, a bottom-
feeder in the Aquarium of Academe dependent on food sprinkled by government
hand, an OPM (Other People’s Money) addict – in short, one who has to not
infrequently explain to a variety of folks how and why I’m using their money
wisely by following the Beowulf Way instead of just taking the easy way out
and spending ten times as much on a Cray.

1Did you notice how I pointedly refrained from calling the administrative individuals some-
thing humorously pejorative such as “bean counters”?
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20.1 Beowulf Description

A beowulf-class parallel supercomputer is a cost-effective way to acquire su-
percomputing resources to support a variety of kinds of numerical research,
generally in physics, applied mathematics, or engineering but also in weather
prediction, nuclear weapons design, quantum chemistry and in many other fields
as well. Architecturally, a beowulf consists of some (variable) number of com-
modity, off the self (COTS) computers (called “nodes” or “compute nodes”) to
do the actual computations, one or more “head nodes” (COTS computers con-
figured as user workstations and arranged to provide access and services to the
nodes), and one or more interconnecting COTS networks so that the nodes can
communicate with the head node(s) and each other. This collection of comput-
ers runs an open source operating system (generally linux, although there are a
few exceptions) configured in such a way that the usage of all of these compute
resources as a single entity performing parallel computations is facilitated.

The compute nodes are often (but not always) configured without any kind
of monitor or keyboard; they are accessed only via the network. They generally
will have a good deal of memory and relatively fast networking and central
processing units (CPUs). They may or may not have local disk resources such
as CD-ROM drives, hard disks, or floppies.

The head nodes will often have high-end graphics, large disk arrays, attached
printers, scanners, or other peripherals and will provide shared access to disk
space and peripherals to the sparsely equipped nodes. These head nodes will
generally sit on desktops and can be viewed as the “console(s)” of the parallel
supercomputer. They often function as visualization workstations, program
development platforms and may provide network isolation functions to keep the
supercomputing network secure and free from extraneous traffic.

The network plays an essential role in beowulf design. It allows work that is
split up so that it can be executed in parallel on the compute nodes to be sent
to those nodes (often from a session running on a head node). It is then used
to provide data to those running tasks, and to allow those tasks to exchange
information with tasks running on other nodes as required by the computation.

Some parallel computational tasks require a great deal of computation but
not much communication. Beowulf design for these tasks will generally em-
phasize raw compute speed and large memory and spend relatively little on
networking. Other tasks have a lot of communication and relatively little com-
putation. Beowulf design for these tasks will generally emphasize the network;
it is not unheard of to spend more on the networking being delivered to a node
than is spent on the node itself.

Similarly, some computational tasks require that tasks be completed by the
nodes in a very predictable, regular (“synchronous”) way – every node needs to
complete a subtask at some particular time so that they can all communicate
and go on to the next subtask. Program design for this sort of task will be much
simpler if all the nodes are the same and their performance homogeneous and
predictable. Other computational tasks just do chunks of work that are more
or less independent of other chunks and can be completed at any time and in
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any order. In this case it is much less important that the nodes and network be
identical.

Either way, the goal of beowulf design is to provide an aggregation of (in-
dividually) rather inexpensive compute power to apply to advanced numerical
tasks. Unlike a “dedicated function” parallel supercomputer such as a Cray
T3E or IBM SP3, a beowulf is rarely purchased all at once and follows a much
different depreciation and component reuse cycle.

For example, nodes can be purchased and added at any time (provided that
sufficient networking resources exist or are also added to permit the new nodes
to be interconnected. Old nodes that are no longer sufficiently state of the
art to form adequate compute nodes can be cycled out and, with the addition
of a monitor and keyboard, often can function for years longer as perfectly
adequate desktops. The same is true of network components and even head
node components. A beowulf design is emminently recyclable.

A beowulf is therefore rarely bought all at once and then “finished” in the
sense that a commercial single-chassis supercomputer is purchased all at once
and then used as a unit until it is retired. Nodes are added, nodes are re-
moved, nodes are replaced or repaired, and the “supercomputer” carries on.
New nodes for a single beowulf are often funded from several sources over
many years; the Duke Physics department’s primary beowulf, “brahma” (see
http://www.phy.duke.edu/brahma) has been in existence for five years across
two or three generations of hardware.

Nevertheless, in all important ways a beowulf is just as much a real super-
computer as its commercial brethren, only much, much cheaper and much, much
longer lived. In particular, as an identifiable (often named) network entity, it
must generally be treated as capital equipment rather than as a mere aggrega-
tion of desktop workstations, regardless of where its components are actually
physically located. Otherwise one’s design and purchase process is heavily dis-
torted by the need to pay indirect costs on individual nodes while those node
costs in aggregate vastly exceed the capital equipment threshold.
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Chapter 21

Portable Beowulfs

21.1 Special Engineering Problems

For example, a discussion of using low wattage components e.g. laptop mother-
boards, IBM CPU motherboards, Transmeta CPU motherboards. Issue to be
checked – is power savings due to idle mode or half speed mode or is it just
using superior/cooler VLSI technology? Be nice to get somebody to write this
(volunteer anyone?) who’s actually built or is building one. Or get e.g. IBM
or Transmeta to donate hardware so I can build one and write about it. Oooo,
good idea. I’ll have to look into this.

Basically, though, the things to be overcome in a portable are:

1. Low weight

2. Small volume

3. Minimal power draw

4. Minimal cooling

5. Shock Resistance

6. Configuration of ”head node” and the network.

Probably aren’t a lot of Gbps solutions out there, also.

21.2 Portable Example(s)

(as anybody gives me any).
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Part VI

Conclusion and Appendices
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Chapter 22

Conclusions: The Path to
the Future
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Appendix A

Beowulf Software:
Libraries, Programs,
Benchmarks
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Appendix B

Beowulf Hardware:
Computers, Networks,
Switches
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Appendix C

Beowulfery and Me: a
Short Memoir

Let me tell you a little story – the story of how I came to be involved in
beowulfery in the first place.

One’s goal in a Monte Carlo calculation (at least the ones I do as a physicist)
is to importance sample a Markov chain driven by a suitable stochastic selec-
tion rule. The result is built up from many, many “independent, identically
distributed” samples generated by the Markov process1

However, the Markov process does not in general produce completely inde-
pendent states for sampling in each step. In the problems of interest the number
of steps that must be taken to generate one independent sample tends to increase
with the size of the system studied (according to a scaling law of its own). It
can take a lot of samples to generate high precision results for large systems
which have the greatest relevance to the physical phenomena one is simulating.
It can take a very large number of steps in the Markov process to generate this
large number of independent samples.

By “large numbers” here I mean that at one point five or six year ago I ran the
calculation on over 100 Sun Sparc 5’s for nearly a year, continuously. This added
up to well over 2 GFLOP-years of computation. I’d be running on them yet if it
weren’t for the fact that Solaris (2.3) proved utterly incapable of managing my
calculation in the background and a foreground X session simultaneously and
even more unfortunately, my background process usually “won”. This irked the
students at Duke University that these compute clusters technically “belonged”
to2. So I got booted from the student clusters and immediately started to design

1Note that if you don’t know what a Markov process is or how importance sampling Monte
Carlo works, don’t worry about it. Imagine me rolling lots and lots and lots of electronic dice
and playing snakes and ladders. It’s close enough.

2Narrow minded of them, don’t you think? Do your computer science homework on time
or advance the cause of science? Decisions, decisions. Actually, they rapidly learned to just
reboot the systems when they discovered my job running, temporarily foiling my automated
job spawner...
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Duke’s first beowulf, before I even knew that the beowulf project existed.

The design process was simple. SunOS might have worked as an operating
system for the cluster – I’d used Sun’s and PVM and expect for years at that
point doing these calculations and with SunOS they ran nicely in the background
without annoying users working at the console. Solaris was out; I still haven’t
forgiven Sun for taking an operating system that, really, was no worse than
linux 2.0.x and transforming it into something hideous. Linux I’d used and had
marvelled that it was so wonderfully functional - every bit as good as SunOS
(which at the time was arguably the world’s best operating system – I’m not
dissing linux at all).

Intel Pentium Pro’s had also just been introduced and really for the first time
could compete with any of Sun or SGI or DEC’s affordable workstations. So I
added a linux-dual PPro cluster onto our next grant proposal. It was actually
something of a relief to discover the beowulf project (via a visiting physicist from
Drexel). I no longer had to wonder if linux was sufficiently stable to support a
compute cluster as it had already done it.

However, I didn’t have to worry too much, because my task was ECG. I had
managed it for years using an unholy mix of submitting jobs one at a time on
lots of hosts on our lan, then as a master-slave tasks (see below) via PVM, then
(to avoid loading the campus network backbone, which I was far more worried
about than loading Sparc 5’s that had cycles to spare compared to my desktop
SunOS Sparc 2 that could run my calculation in the background and X in the
foreground without difficulty) via expect scripts and /bin/sh scripts. I knew
that as long as I could construct a system that had a network, some reasonably
fast floating point, and rsh that I could get useful work done.

Finally, the systems arrived, I popped linux 2.0.0 in Slackware onto them
(2.0.0 was still so new that it crinkled when you rubbed it, but it did support
SMP operation and I had bought dual PPro’s exclusively) and, after a week
or two of pounding my head against the hardware trying to get an Adaptec
2940 to work3 I’d learned a lot about the kernel, had for the first time in my
life managed to actually break a filesystem by (necessarily) shutting a system
down without syncing it, had gotten pretty good at the Slackware floppy-based
install, had learned to flash an Adaptec BIOS, had moved up several kernel
revisions to 2.0.11 or so, and had a very small stack of dual PPro’s on switched
100BT (which at that time was very expensive) running a parallel calculation.

I’d also joined about six linux lists, including at some point then or soon
thereafter, the beowulf list. The beowulf list proved to be a godsend. There
were other people out there who were using linux-based COTS computers to
build supercomputer-class clusters. They were going through the same things I
was. Making the network cards behave (some didn’t). Deciding whether single
CPU boxes were “better” or “worse” than dual CPU boxes (answer: it depends,
as discussed in the chapter on bottlenecks). Learning to be envious of those who

3This was long ago when if you’d said “linux” to an Adaptec rep they’d have said “Huh?”.
Adaptec at the time had this nasty habit of changing the card BIOS without changing their
revision number. I believe they still do.
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had really big piles of systems with snazzy superfast networks like Myrinet (in
spite of the fact that I, at least, didn’t really need a superfast network).

The folks on the beowulf list have taught me, step by step, most of what
I know about cluster computing. Sometimes the lessons were pleasant and
fruitful, other times I got by skin blasted off by nuclear flames, but both ways I
learned and eventually got to where I could contribute some of what I’d learned
back to the list.

In case I haven’t made it sufficiently clear yet, I am not a real computer
scientist, I’m just a humble physicist. There are plenty of folks on the beowulf
list who are real computer scientists, some of them Bell-prizewinning scientists
at that (I’ve seen the one hanging on Don Becker’s wall, for example). To all of
them I am humbly grateful, and to them I dedicate this book4.

4If nothing else, guys, maybe I can start answering certain questions with something like
“download this book” and reduce list traffic by some fraction of my not inconsiderable expos-
tulation.
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